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ABSTRACT

Approaches for automatic crash reproduction aim to generate test
cases that reproduce crashes starting from the crash stack traces.
These tests help developers during their debugging practices. One
of the most promising techniques in this research field leverages
search-based software testing techniques for generating crash re-
producing test cases. In this paper, we introduce Botsing, an open-
source search-based crash reproduction framework for Java. Bots-
ing implements state-of-the-art and novel approaches for crash
reproduction. The well-documented architecture of Botsing makes
it an easy-to-extend framework, and can hence be used for im-
plementing new approaches to improve crash reproduction. We
have applied Botsing to a wide range of crashes collected from
open source systems. Furthermore, we conducted a qualitative as-
sessment of the crash-reproducing test cases with our industrial
partners. In both cases, Botsing could reproduce a notable amount
of the given stack traces.

Demo. video: https://www.youtube.com/watch?v=k6XaQjHqe48
Botsing website: https://stamp-project.github.io/botsing/
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1 INTRODUCTION

Crashes are usually reported to developers through an issue tracker.
For Java programs, most of the time, these reports contain a stack
trace, which provides information such as the type of the exception
causing the crash and the stack of method calls (the frames) through
which the exception has occurred. A developer relies on this stack
trace to understand the root cause of the crash, debug, and fix the
software. Zeller describes how writing a test able to reproduce a
reported crash is one of the helpful practices to ease debugging [19].
Similarly, Soltani et al. [16] indicate that crash reproducing tests
help developers to fix bugs faster. Eventually, such tests can be
adapted and added to the test suite to prevent future regressions.
However, reproducing a crash using its reported stack trace is
a laborious and time-intensive task [16]. Also, we observed that
manually reproducing a crash requires an experienced developer
who has the proper amount of knowledge about the software.

Many automated approaches for crash reproduction have been
introduced in the literature to ease the debugging process [2, 11, 13,
15, 16, 18]. These approaches either use runtime data or the stack
trace to perform crash reproduction. For the former, the accuracy
depends on the amount of data considered. However, such data
are not always available due to the overhead induced by the data
collection, or privacy violation concerns. In contrast, the latter
approaches solely rely on stack traces, collected from issue reports
or execution logs.

Among the different stack-trace-based crash reproduction ap-
proaches, Rößler et al. [13] and Soltani et al. [16] rely on Search-
Based Software Testing (SBST) to automatically generate a crash
reproducing test. Soltani et al. [16] empirically showed that evolu-
tionary approaches based on guided operators outperform other
existing approaches and confirmed the usefulness of the generated
tests for debugging purposes.

In this paper, we present Botsing: an open-source, extendable
search-based crash reproduction framework. Botsing implements
search-based crash reproduction approaches introduced in previous
studies [13, 15, 16]. The tool takes as input a stack trace and soft-
ware under test. Then, it starts a single-objective or multi-objective
search process to generate a test reproducing the crash.

Botsing has been designed as an extendable framework for
implementing new features and search algorithms for crash repro-
duction. For example, in our recent study on the impact of various
seeding strategies on crash reproduction, we have implemented
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Figure 1: Botsing architecture overview

multiple seeding strategies in Botsing [4]. These seeding strategies
leverage existing knowledge about the software under test to ease
the test generation process. To evaluate these strategies, we used
124 real-world crashes from JCrashPack [14], a benchmark for
Java crash reproduction tools. The results show that Botsing can
reproduce 66 (out of 124) crashes without seeding. This number is
improved to 70 by using model seeding.

From an industrial perspective, Botsing is used by our partners
in the STAMP project.1 They confirmed the relevance of Botsing
for debugging and fixing application crashes [1]. The feedback —as
well as the crash reproducing test cases— from our partners using
Botsing are openly available in the STAMP GitHub repository.2

2 USAGE

Botsing is available as an open-source tool at https://github.com/
STAMP-project/botsing. A user can download the jar file and run
the tool using the command line according to the existing documen-
tations [17]. For the example in Figure 2, we can call Botsing with
the following command: java -jar botsing-reproduction.jar
-project_cp <path> -crash_log LANG-9b.log -target_frame
5, where <path> is the directory with the jar files of Apache com-
mons lang. At the end of the search process, Botsing generates the
test case in Figure 3. In general, a developer needs to provide a log
file containing the stack trace and the classpath to the jar file and
all the dependencies of the software under test. To activate seeding
strategies, she also needs to provide the compiled version of test
cases (for test seeding) or the behavioral models generated by the
model inference module.

3 BOTSING

The goal of Botsing is finding a test case that reproduces a crash,
according to the corresponding stack trace. In this section, we
first present the general workflow, and, next, describe the seeding
strategies implemented in Botsing.

1Available at http://stamp-project.eu/
2Available at https://github.com/STAMP-project/botsing-usecases-output.

0 java.lang.ArrayIndexOutOfBoundsException: 4

1 at [...]. FastDateParser.toArray(FastDateParser.java :413)

2 at [...]. FastDateParser.getDisplayNames ([...]:381)

3 at [...]. FastDateParser$TextStrategy.addRegex ([...]:664)

4 at [...]. FastDateParser.init ([...]:138)

5 at [...]. FastDateParser.<init >([...]:108)

6 [...]

Figure 2: LANG-9b crash stack trace [10, 14]

@Test(timeout = 4000)

public void test0() throws Throwable {

Locale locale0 = FastDateParser.JAPANESE_IMPERIAL;

TimeZone timeZone0 = TimeZone.getDefault ();

FastDateParser fastDateParser0 = null;

fastDateParser0 = new FastDateParser("GMTJST", timeZone0 ,

locale0);

}

Figure 3: LANG-9b crash reproducing test [14]

Figure 1 presents the general architecture of Botsing. The main
component is the Test Case Generationmodule, which takes as input
the binaries of the application and a Java stack trace. A stack trace
contains two parts: the first line, indicating the type of the exception,
followed by a list of frames. Each frame points to a specific line
of code in the software under test. For instance, the stack trace
of Figure 2, caused by a bug in the Apache commons-lang library
[10, 14], indicates that an ArrayIndexOutOfBoundsException is
thrown (at line 0) and propagated through different frames (from
line 1 to line 6), indexed from 1 (at line 1) to the total number of
frames in the stack trace.

To generate a unit test, Botsing requires to set the target frame
and its associated target class for which the unit test will be
generated. For instance, when setting the target frame to 5 for the
stack trace in Figure 2, Botsing generates a unit test for the target
class FastDateParser, presented in Figure 3. The last statement of
the test case (calling the target method FastDateParser.<init>)
triggers a crash, generating the same stack trace as in Figure 2.

Once the input is provided, Botsing starts an Evolutionary Search
to generate a test case that triggers the target crash. To guide the
search, at each iteration, the Fitness Functionmeasures the adequacy
level of the current set of generated tests w.r.t. their ability to re-
produce the crash. By default, the tests in this search process are
generated randomly to promote exploration of the search space.
Each generated test uses objects in a random manner through ran-
dom method sequences. However, there are no guarantees that
these random usages of the objects are correct w.r.t. the explicit or
implicit specification of the classes, which can lead to misguiding
the search process. To alleviate such a limitation, Botsing includes
a seeding mechanism that can be activated to generate objects and
method calls closer to real-world scenarios, based on the knowl-
edge of the software. The seeding process can rely on two types
of knowledge: (i) the existing manually-written tests, or (ii) the
models (i.e., transition systems) abstracting usages of each class.

In the remaining part of this section, we describe the test case
generation and the seeding mechanism, including the model gener-
ation process.
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3.1 Test Case Generation

In the first step of the search process, Botsing generates a random
initial population of test cases such that: (i) each individual in this
population is a test case containing a sequence of calls to methods
of the target class; and (ii) the last method called in the sequence is
the target method. After generating the random initial population,
Botsing starts an evolutionary search process to refine the test
cases until one can reproduce the stack trace. At each iteration,
Botsing will select the best individuals in the population to build
the next generation of test cases using crossover and mutation.

To select the best test case, Botsing relies on a fitness function to
compute a distance measuring how close the execution of a test case
is to reproducing the crash. Three fitness functions are available in
Botsing. The default fitness function is the single objective fitness
function [16]. This fitness function combines three conditions in
one single measure (i.e., one objective): (i) if the generated test
reaches the line of the target frame, (ii) if it throws the same type
of exception, and (iii) if the occurred stack trace in the generated
test is similar to the given one. As an alternative, Botsing can
use multi-objectivization approaches (to improve diversity), which
splits the single-objective fitness function in three independent
sub-objectives [15], or add two helper objectives (method-sequence
diversity and test length minimization) [6]. The last fitness function,
introduced by Rößler et al. [13], checks if the generated test covers
each frame one by one and, after covering all of the frames, checks
the type of the thrown exception.

After selecting the fittest test cases, Botsing uses the two stan-
dard evolutionary operations [9] to produce the next generation
of test cases: single-pointed crossover and mutation. After the appli-
cation of each operator, there is a risk that the test case no longer
contains the target method. To prevent such test cases from being
included in the next generation, we use an additional operator to
repair the evolved chromosomes (if needed) [16]. Botsing contin-
ues the search until it produces a test case able to reproduce the
given stack trace or until it exceeds its given time budget (timeout).

3.2 Seeding

One of the challenges in search-based crash reproduction is reach-
ing the state that throws the given exception [14]. In some cases,
it is hardly feasible using only random test generation. Seeding
addresses that problem by providing additional information to the
search process, based on the knowledge of the system. Botsing
implements two seeding strategies: (i) the Test Seeding strategy
introduced by Rojas et al. [12] and suitably adapted for crash repro-
duction, and (ii) a novel seeding strategy called Behavioral Model
Seeding, introduced in our previous study [4].

Test Seeding. Instead of random generation, test seeding uses
the existing test cases, manually-written by developers, and exe-
cutes them to observe the usages of the different objects created
during the execution. During this process, called carving, the objects
are added to an object pool, used later during the test generation.
We adapted EvoSuite’s implementation of test seeding to crash
reproduction: i.e., we implemented an additional step to check that
the carved objects of the target class indeed call the target method
(i.e., the methods in the crash stack frames).
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JAR

Application

Model Inference 

Botsing Model Generator

Static Analysis

Dynamic Analysis

Inference
YAMI

Models

Existing Tests

Figure 5: Model Inference architecture overview

3.2.1 Behavioral Model Seeding. The second seeding strategy im-
plemented in Botsing is Behavioral Model Seeding [4]. This seeding
strategy gets a set of transition systems, representing usages of a
set of classes, as input. These models are generated by the Model
Inference module, described hereafter. Each transition system
models the potential method call sequences for a class. For instance,
Figure 4 shows the transition system for Java LinkedLists. Each
transition is a method call, and each path is an abstract behavior
denoting a potential sequence of method calls. Botsing relies on
VIBeS [8], a model-based testing tool, to select the most dissimilar
paths (i.e., abstract behavior) in a model. Next, it concretizes the
abstract behavior to a concrete object with method sequence, and
adds it to the object pool. To mimic realistic usages of a class, the
objects in the pool are later used during the search process to craft
test cases.

Model Inference. Figure 5 shows the architecture of the Model
Inference module. This module observes how specific classes are
used in the source code and the manually-written test cases to
learn a behavioral model. For source code, the module applies static
analysis and collects all of the sequences of method calls for the
classes under analysis. For existing test cases, it performs dynamic
analysis and executes all the tests to collect sequences of methods
(effectively) called on the different objects during test execution.
After collecting the call sequences, Botsing abstracts them in tran-
sition systems (one transition system per class) using YAMI [7],
a 2-gram model inference tool. Practically, for one system, model
inference is a one-time process: i.e., the generated models can be
used for different executions of Botsing.

3.3 Implementation

Botsing relies on EvoSuite for code instrumentation, test case
manipulation and execution. Concretely, we use evosuite-client
as a dependency. During the implementation of Botsing, we ex-
tend the existing classes in EvoSuite to adapt them to the crash
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reproduction problem. For instance, Botsing needs to instrument
the classes appearing in the given stack trace. In contrast, EvoSuite
is a unit testing tool and it instruments only one class. Hence, for
implementing fitness functions for crash reproduction we need to
extend the instrumentation of EvoSuite. To make some classes
extendable in EvoSuite, we had to change the visibility of some
classes in EvoSuite. Hence, we change the access level of some
methods in some classes to make sure that we can extend those
classes. These changes on EvoSuite are available in our fork from
the main repository.3

Botsing’s architecture is designed to be extendable. For this
purpose, most of the classes related to different parts of the genetic
algorithm (e.g., fitness functions, genetic algorithm, etc.) are de-
signed as factory classes. We also reported the architecture and a
contribution guide in the documentation [17].

4 EVALUATION

We use JCrashPack [3, 14], a crash benchmark for evaluating crash
reproduction approaches, to assess Botsing. This benchmark con-
tains real-world crashes collected from seven well-known projects,
namely Closure compiler, Apache commons-lang, Apache commons-
math, Mockito, Joda-Time, XWiki, and ElasticSearch. Moreover, to
ease benchmarking using JCrashPack, we developed a bash-based
execution runner, openly available on GitHub.4 This experiment
runner runs different instances of a crash reproduction tool (here,
Botsing) in parallel processes and collects relevant information
about the execution in a CSV file.

In our evaluation of the impact of test and model seeding for
search-based crash reproduction [4], we ran Botsing without seed-
ing and with each implemented seeding strategy on JCrashPack.
Due to the involved randomness in the search process, we repeat
each execution 30 times. We observe that Botsing can reproduce
66 (out of 124) crashes without any seeding strategy in a majority of
the executions. The implemented seeding strategies help the crash
reproduction process to reproduce four additional crashes in the
majority of executions.

In total, we run 186,560 independent Botsing runs, distributed
among two clusters with 20 CPU-cores, 384 GB memory, and 482
GB hard drive. The results and replication package of this study are
openly available on Zenodo [5]. The relevance of Botsing for crash
reproduction has been confirmed by our industrial partners [1].
Botsing reproduced 25%, 20%, and 30% of crashes in TellU, XWiki,
and OW2 projects, respectively. Compared to the complexity of
the used projects (for instance, XWiki has an average of 177K non-
commenting statements), the reproduction ratios are noteworthy.

5 CONCLUSION

In this paper, we introduced Botsing, an open-source search-based
crash reproduction framework, which contains the implementation
of the best-performing approaches. It also contains the adapted
version of the Test Seeding strategy, whichwas originally introduced
for search-based software testing, but whichwe adapted to the crash
replication context. Additionally, Botsing provides a novel seeding
strategy, called Behavioral Model Seeding.

3https://github.com/STAMP-project/evosuite-ramp
4https://github.com/STAMP-project/ExRunner-bash

The Botsing framework is developed with extensibility in mind.
So, it can be used for implementing new features and genetic al-
gorithms for the crash reproduction problem. We also provide an
open-source evaluation infrastructure to ease the assessment pro-
cess of the new approaches.

In our evaluation, Botsing can reproduce 66 crashes out of 124
hard-to-reproduce crashes, partially or entirely, in the majority of
executions. This number increases to 70 crashes when using Behav-
ioral Model Seeding. Also, Botsing has been used by our industrial
partners. They managed to reproduce some of their crashes using
Botsing and argued that Botsing is helpful for their debugging
practices.
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