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Abstract
Search-based techniques have been widely used for white-box test generation. Many of these
approaches rely on the approach level and branch distance heuristics to guide the search
process and generate test cases with high line and branch coverage. Despite the positive results
achieved by these two heuristics, they only use the information related to the coverage of
explicit branches (e.g., indicated by conditional and loop statements), but ignore potential
implicit branchings within basic blocks of code. If such implicit branching happens at runtime
(e.g., if an exception is thrown in a branchless-method), the existing fitness functions can-
not guide the search process. To address this issue, we introduce a new secondary objective,
called Basic Block Coverage (BBC), which takes into account the coverage level of relevant
basic blocks in the control flow graph. We evaluated the impact of BBC on search-based unit
test generation (using the DYNAMOSA algorithm) and search-based crash reproduction
(using the STDistance and WeightedSum fitness functions). Our results show that for unit
test generation, BBC improves the branch coverage of the generated tests. Although small
(∼1.5%), this improvement in the branch coverage is systematic and leads to an increase
of the output domain coverage and implicit runtime exception coverage, and of the diver-
sity of runtime states. In terms of crash reproduction, in the combination of STDistance and
WeightedSum, BBC helps in reproducing 3 new crashes for each fitness function. BBC sig-
nificantly decreases the time required to reproduce 43.5% and 45.1% of the crashes using
STDistance and WeightedSum, respectively. For these crashes, BBC reduces the consumed
time by 71.7% (for STDistance) and 68.7% (for WeightedSum) on average.
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1 Introduction

Various search-based techniques have been introduced to automate different white-box test
generation activities, e.g., unit testing (Fraser and Acuri 2013b, 2011), integration test-
ing (Derakhshanfar et al. 2020), or system-level testing Arcuri (2019). Depending on the
testing level, each of these approaches utilizes dedicated fitness functions to guide the
search process and produce a test suite satisfying given criteria (e.g., line coverage, branch
coverage, etc.).

Fitness functions typically rely on control flow graphs (CFGs) to represent the source
code of the software under test (McMinn 2004). Each node in a CFG is a basic block of
code (i.e., maximal linear sequence of statements with a single entry and exit point with-
out any internal branch), and each edge represents a possible execution flow between two
blocks. Two well-known heuristics are usually combined to achieve high line and branch
coverages: the approach level and the branch distance (McMinn 2004). The former mea-
sures the distance between the execution path of the generated test and a target basic block
(i.e., a basic block containing a statement to cover) in the CFG. The latter measures, using
a set of rules, the distance between an execution and the coverage of a true or false branch
of a particular predicate in a branching basic block of the CFG.

Both approach level and branch distance assume that only a limited number of basic
blocks (i.e., control dependent basic blocks Allen 1970) can change the execution path
away from a target statement (e.g., if a target basic block is the true branch of a conditional
statement). However, basic blocks are not atomic due to the presence of implicit branches
(Borba et al. 2010) (i.e., branches occurring due to the exceptional behavior of instructions).
As a consequence, any basic block between the entry point of the CFG and the target basic
block can impact the execution of the target basic block. For instance, a generated test case
may stop its execution in the middle of a basic block with a runtime exception thrown by
one of the statements of that basic block. In these cases, the search process does not benefit
from any further guidance from the approach level and branch distance.

Fraser and Arcuri (Fraser and Arcuri 2015a) introduced testability transformation for
unit testing, which instruments the code to guide the unit test generation search to cover
implicit exceptions happening in the class under test. However, this approach does not guide
the search process in scenarios where an implicit branch happens in another class called by
the class under test. This is due to the extra cost added to the search process stemming from
the calculation and monitoring of implicit branches in all the classes coupled to the class
under test. For instance, the class under test may be heavily coupled with other classes in
the project, thereby finding implicit branches in all of these classes can be expensive.

In contrast, other test case generation scenarios, like crash reproduction, aim to cover
only a limited number of paths, and thereby we only need to analyse a limited number of
basic blocks (Chen and Kim 2015; Xuan et al. 2015; Nayrolles et al. 2015; Rößler et al.
2013; Soltani et al. 2018). Current crash reproduction approaches rely on information about
a reported crash (e.g., a stack trace, a core dump, etc.) to generate a crash reproducing test
case.

Among these approaches, search-based crash reproduction (Rößler et al. 2013; Soltani
et al. 2018) takes as input a stack trace to guide the generation process. More specifically,
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the statements pointed to by the stack trace act as target statements for the approach level
and branch distance. Hence, current search-based crash reproduction techniques suffer from
a lack of guidance in cases where the involved basic blocks contain implicit branches (which
is common when trying to reproduce a crash).

In our prior work we have introduced a novel secondary objective called Basic Block
Coverage (BBC) to address the guidance problem in crash reproduction (Derakhshanfar
et al. 2020). The secondary objective guides the search process to differentiate two gener-
ated tests with the same fitness values (here, same approach level and branch distance). This
paper extends our prior work on BBC to the more general unit test case generation context.

BBC helps the search process to compare two generated test cases with the same distance
(according to approach level and branch distance) to determine which one is closer to the
target statement. In this comparison, BBC analyzes the coverage level, achieved by each of
these test cases, of the basic blocks in between the closest covered control dependent basic
block and the target statement.

To assess the impact of BBC on search-based unit test generation, we implemented
BBC in EVOSUITE (Fraser and Arcuri 2011), the state-of-the-art tool for search-based unit
test generation, and evaluate its performance against the classical DYNAMOSA (Panichella
et al. 2018b) for various activation probabilities of BBC (11 configurations in total). We
applied these eleven configurations to 219 classes under test selected from the last version of
DEFECTS4J v.2.0.0 (Just et al. 2014), a collection of existing faults. We compare the perfor-
mance in terms of effectiveness for branch coverage, weak mutation score, output coverage,
and real fault detection capabilities.

Our results show that BBC improves the branch coverage of the generated tests when
activating BBC as a secondary objective in DYNAMOSA. Although small on average (from
74.5% for DYNAMOSA up to 76.1% for BBC), this improvement in the branch coverage
leads to an increase of the average output domain coverage (from 54.2% for DYNAMOSA
up to 55.5% for BBC) and implicit runtime exception coverage (from 75.1% when using
DYNAMOSA up to 80.3% for BBC), and of the diversity of runtime states (denoted by an
increase of the average weak mutation score from 73.2% for DYNAMOSA, up to 74.6%
for BBC). Our statistical analysis confirms that this improvement is systematic across all
BBC configurations. Activating BBC also significantly improves with a large effect the fault
detection rate for 3 real faults out of 92.

Similarly, to assess the impact of BBC on search-based crash reproduction, we re-
implemented the existing STDistance (Rößler et al. 2013) and WeightedSum (Soltani et al.
2018) fitness functions and empirically compared their performance with and without using
BBC (4 configurations in total). We applied these four crash reproduction configurations
to 124 hard-to-reproduce crashes introduced in JCRASHPACK (Soltani et al. 2020), a crash
benchmark used by previous crash reproduction studies (Derakhshanfar et al. 2020). We
compare the performance in terms of effectiveness in crash reproduction ratio (i.e., per-
centage of times that an approach can reproduce a crash) and efficiency (i.e., time required
by for reproducing a crash).

Our results show that BBC significantly improves the crash reproduction ratio over the
30 runs in our experiment for respectively 10 and 4 crashes when compared to using STDis-
tance and WeightedSum without any secondary objective. Also, BBC helps these two fitness
functions to reproduce 3 (for STDistance) and 3 (for WeightedSum) crashes that could not
be reproduced without secondary objective. Besides, on average, BBC increases the crash
reproduction ratio of STDistance and WeightedSum by 9% and 4.5%, respectively. Apply-
ing BBC also significantly reduces the time consumed for crash reproduction guided by
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STDistance and WeightedSum in 56 (45.1% of cases) and 54 (43.5% of cases) crashes,
respectively. In cases where BBC has a significant impact on efficiency, this secondary
objective improves the average efficiency of STDistance and WeightedSum by 71.7% and
68.7%, respectively.

The remainder of this paper is organized as follow: Section 2 reports the background
and related work on CFG-based guidance. Section 3 describes our novel BBC secondary
objective and how it can be used for search-based crash reproduction and search-based
unit test generation. Section 4 describes our evaluation to assess the importance of implicit
branches (RQ 0) and the impact of BBC on search-based unit test generation (RQ 1) and
search-based crash reproduction (RQ 2). Section 5 presents our results on 219 classes under
test selected from the last version of DEFECTS4J and 124 hard-to-reproduce crashes from
JCRASHPACK. Sections 6 and 7 discuss our results and their implications for search-based
test case generation, and Section 8 concludes the paper.

2 Background and RelatedWork

2.1 Coverage Distance Heuristics

Many structural-based search-based test generation approaches mix the branch distance and
approach level heuristics to achieve a high line and branch coverage (McMinn 2004). These
heuristics measure the distance between a test execution path and a specific statement or a
specific branch in the software under test. For that, they rely on the coverage information
of control dependent basic blocks, i.e., basic blocks that have at least one outgoing edge
leading the execution path toward the target basic block (containing the targeted statement)
and at least another outgoing edge leading the execution path away from the target basic
block. As an example, Listing 1 shows the source code of the method fromMap from

Listing 1 Method fromMap from XWIKI version 8.1 (Soltani et al. 2020)
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Fig. 1 CFG for method fromMap

XWIKI1, and Fig. 1 contains the corresponding CFG. In this graph, the basic block 409
is control dependent on the basic block 407-408 because the execution of line 409 is
dependent on the condition at line 408 (i.e., line 409 will be executed only if elements of
array formvalues are String).

The approach level is the number of uncovered control dependent basic blocks for the
target basic block between the closest covered control dependent basic block and the target
basic block. The branch distance is calculated from the predicate of the closest covered
control dependent basic block, based on a set of predefined rules. Assuming that the test t

covers only line 403 and 418, and our target line is 409, the approach level is 2 because
two control dependent basic blocks (404-406 and 407-408) are not covered by t . The
branch distance for the predicate in line 403 (the closest covered control dependency of
node 409) is measured based on the rules from the establised technique (McMinn 2004).

To the best of our knowledge, there is no related work studying the extra heuristics
helping the combination of approach level and branch distance to improve the coverage.
Most related to our work, Panichella et al. (2018b) and Rojas et al. (2015) introduced two
heuristics called infection distance and propagation distance, to improve the weak mutation
score of two generated test cases. However, these heuristics do not help the search process
to improve the general statement coverage (i.e., they are effective only after covering a
mutated statement).

In this paper, we introduce a new secondary objective to improve the statement coverage
achieved by fitness functions based on the approach level and branch distance, and analyze
the impact of this secondary objective on search-based unit test generation and search-
based crash reproduction.

1https://github.com/xwiki

https://github.com/xwiki
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2.2 Search-based Unit Test Generation

Search-based software test generation (SBST) algorithms use meta-heuristic optimization
search techniques (e.g., genetic algorithm) to automate the test generation tasks in differ-
ent testing levels. One of these levels is unit testing, where the search algorithm tries to
generate tests satisfying various criteria (such as line coverage and branch coverage) for
a given class under test (CUT). SBST techniques are widely used for unit test generation.
Prior studies showed that the tests generated by these techniques achieve a high code cov-
erage (Panichella et al. 2018a; Campos et al. 2018) and real-bug detection (Almasi et al.
2017), hence complementing the hand-written test cases.

Dynamic many-objective sorting algorithm (DYNAMOSA). Panichella et al. have recently
introduced an evolutionary-based algorithm, called DYNAMOSA, for unit test generation
(Panichella et al. 2018b). Their study (Panichella et al. 2018a), independently confirmed
by Campos et al. (2018), shows that DYNAMOSA outperforms other unit test generation
techniques in terms of structural coverage and mutation coverage. This approach is currently
used as the default algorithm in EVOSUITE, which is the state-of-the-art tool for search-
based unit test generation.

DYNAMOSA relies on the hierarchy of dependencies between the coverage targets
(e.g., lines and branches) to perform a dynamic selection of the objectives during the search
process. For instance, by applying DYNAMOSA to generate tests for method fromMap
(Listing 1), this algorithm, first, try to cover targets that do not have any dependencies. So,
first, it tries to generate test cases to cover nodes 403 and 418. After covering node 403,
it tries to cover the node 404-406, which is control-dependent on the covered node. DY-
NAMOSA continuously changes the search objectives up to the point that all of the targets
are covered.

Since DYNAMOSA uses the approach level and branch distance heuristics to guide the
search process towards achieving the high line, branch, and weak mutation coverage, BBC
may help this technique to cover more targets. This study performs an in-depth experiment
and analysis to see whether BBC can improve DYNAMOSA.

Testability Transformation (TT). Testability transformations address the problem of
implicit branches in unit test generation (Li and Fraser 2011; Fraser and Arcuri 2015a). This
strategy transforms the code to make implicit branches explicit by adding extra branches for
error conditions, and bring more guidance for the approach level and branch distance heuris-
tics. For code transformation of each class, TT needs extra bytecode instrumentation. Since
instrumenting some classes can be difficult due to several known issues (Fraser and Arcuri
2013a), instrumenting each class, which is coupled with the class under test, may fail. Also,
if we limit the testability transformations to the class under test, the search process will not
have any extra guidance in cases of facing the implicit branches in the other classes.

2.3 Search-based Crash Reproduction

After a crash is reported, one of the essential steps of software debugging is to write a
crash reproducing test case to make the crash observable to the developer and help them
in identifying the root cause of the failure (Zeller 2009). Later, this crash reproducing test
can be integrated into the existing test suite to prevent future regressions. Despite the use-
fulness of a crash reproducing test, the process of writing this test can be labor-intensive
and time-taking (Soltani et al. 2018). Various techniques have been introduced to automate
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the reproduction of a crash (Chen and Kim 2015; Xuan et al. 2015; Nayrolles et al. 2015;
Rößler et al. 2013; Soltani et al. 2018), and search-based approaches (EVOCRASH (Soltani
et al. 2018) and RECORE Rößler et al. 2013) yielded the best results (Soltani et al. 2018).

EVOCRASH. This approach utilizes a single-objective genetic algorithm to generate a crash
reproducing test from a given stack trace and a target frame (i.e., a frame in the stack trace
that its class will be used as the class under test). The crash reproducing test generated by
EVOCRASH throws the same stack trace as the given one up to the target frame. For example,
by passing the stack trace in Listing 2 and target frame 3 to EVOCRASH, it generates a test
case reproducing the first three frames of this stack trace (i.e., thrown stack trace is identical
from line 0 to 3).

EVOCRASH uses a fitness function, called WeightedSum, to evaluate the candidate test
cases. WeightedSum is the sum scalarization of three components: (i) the target line cov-
erage (ds), which measures the distance between the execution trace and the target line
(i.e., the line number pointed to by the target frame) using approach level and branch dis-
tance; (ii) the exception type coverage (de), determining whether the type of the triggered
exception is the same as the given one; and (iii) the stack trace similarity (dtr ), which indi-
cates whether the stack trace triggered by the generated test contains all frames (from the
most in-depth frame up to the target frame) in the given stack trace.

Definition 1 (WeightedSum Soltani et al. 2018) For a given test case execution t , the
WeightedSum (ws) is defined as follows:

ws(t) =
⎧
⎨

⎩

3 × ds(t) + 2 × max(de) + max(dtr ) if line not reached
3 × min(ds) + 2 × de(t) + max(dtr ) if line reached
3 × min(ds) + 2 × min(de) + dtr (t) if exception thrown

(1)

Where ds(t) ∈ [0, 1] indicates how far t is from reaching the target line and is computed
using the normalized approach level and branch distance: ds(t) = ‖approachLevels(t) +
‖branchDistances(t)‖‖ (‖ indicates the normalized value); de(t) ∈ {0, 1} shows if the type
of the exception thrown by t is the same as the given stack trace (0) or not (1); dtr (t) ∈ [0, 1]
measures the stack trace similarity between the given stack trace and the one thrown by t .
max(f ) and min(f ) denote the maximum and minimum possible values for a function f ,
respectively.

In this fitness function, de(t) and dtr (t) are only considered in the satisfaction of two
constraints: (i) exception type coverage is relevant only when we reach the target line and
(ii) stack trace similarity is important only when we both reach the target line and throw the
same type of exception.

As an example, when applying EVOCRASH on the stack trace from Listing 2 with the
target frame 3, WeightedSum first checks if the test cases generated by the search process

Listing 2 XWIKI-13377 crash stack trace (Soltani et al. 2020)
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reach the statement pointed to by the target frame (line 413 in class BaseClass in this
case). Then, it checks if the generated test can throw a ClassCastException or not.
Finally, after fulfilling the first two constraints, it checks the similarity of frames in the stack
trace thrown by the generated test case against the given stack trace in Listing 2.

EVOCRASH uses guided initialization, mutation and single-point crossover operators to
ensure that the target method (i.e., the method appeared in the target frame) is always called
by the different tests during the evolution process.

According to a recent study, EVOCRASH outperforms other non-search-based crash
reproduction approaches in terms of effectiveness in crash reproduction and effi-
ciency (Soltani et al. 2018). This study also shows the helpfulness of tests generated by
EVOCRASH for developers during debugging.

In this paper, we assess the impact of BBC as the secondary objective in the EVOCRASH

search process.

RECORE This approach utilizes a genetic algorithm guided by a single fitness function,
which has been defined according to the core dump and the stack trace produced by the
system when the crash happened. To be more precise, this fitness function is a sum scalariza-
tion of three sub-functions: (i) TestStackTraceDistance, which guides the search process
according to the given stack trace; (ii) ExceptionPenalty, which indicates whether the same
type of exception as the given one is thrown or not (identical to ExceptionCoverage in EVO-
CRASH); and (iii) StackDumpDistance, which guides the search process by the given core
dump.

Definition 2 (TestStackTraceDistance Rößler et al. 2013) For a given test case execution t ,
the TestStackTraceDistance (STD) is defined as follows:

STD(R, t) = |R| − lcp − (1 − StatementDistance(s)) (2)

Where |R| is the number of frames in the given stack trace. And lcp is the longest com-
mon prefix frames between the given stack trace and the stack trace thrown by t . Concretely,
|R| − lcp is the number of frames not covered by t . Moreover, StatementDistance(s)

is calculated using the sum of the approach level and the normalized branch distance to
reach the statement s, which is pointed to by the first (the utmost) uncovered frame by t :
StatementDistance(s) = approachLevels(t) + ‖branchDistances(t)‖.

Since using runtime data (such as core dumps) can cause significant overhead (Chen and
Kim 2015) and leads to privacy issues (Nayrolles et al. 2015), the performance of RECORE

in crash reproduction was not compared with EVOCRASH in prior studies (Soltani et al.
2018). Although, two out of three fitness functions in RECORE use only the given stack
trace to guide the search process. Hence, this paper only considers TestStackTraceDistance
+ ExceptionPenalty (called STDistance hereafter).

As an example, when applying RECORE with STDistance on the stack trace in Listing 2
with target frame 3, first, STDistance determines if the generated test covers the statement
at frame 3 (line 413 in class BaseClass). Then, it checks the coverage of frame 2 (line
615 in class PropertyClass). After covering the first two frames by the generated test
case, it checks the coverage of the statement pointed to by the deepest frame (line 45 in
class BaseStringProperty). For measuring the coverage of each of these statements,
STDistance uses the approach level and branch distance. After covering all of the frames,
this fitness function checks if the the generated test throws ClassCastException in
the deepest frame.
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In this study, we perform an empirical evaluation to assess the performance of crash
reproduction using STDistance with and without BBC as the secondary objective in terms
of effectiveness in crash reproduction and efficiency.

3 Basic Block Coverage

3.1 Motivating Example

During the search process, the fitness of a test case is evaluated using a fitness function.
These fitness functions are different according to the given test criteria. However, one of
the main components of these fitness functions is the coverage of specific statements and
branches. For instance, one of the main goals in the unit test generation is achieving a high
structural coverage (e.g., line and branch coverage). For this goal, the search process seeks
to cover all of the statements and branches in the given CUT. Similarly, the fitness functions
used in search-based crash reproduction (either WeightedSum or STDistance) require the
coverage of specific statements pointed by the given stack trace.

The distance of the test case from the target statement is calculated using the
approach level and branch distance heuristics. As we have discussed in Section 2.1,
the approach level and branch distance cannot guide the search process if the execu-
tion stops because of implicit branches in the middle of basic blocks (e.g., a thrown
NullPointerException during the execution of a basic block). As a consequence,
these fitness functions may return the same fitness value for two tests, although the tests do
not cover the same statements in the block of code where the implicit branching happens.

For instance, assume that one of the objectives of a search process (either for unit test
generation or crash reproduction) is covering line 413 in method fromMap (appeared in
Listing 1). This search process generates two test cases T1 and T2 for achieving this objec-
tive in a population of solutions. However, T1 stops the execution at line 404 due to a
NullPointerException thrown in method getName, and T2 throws a NullPoint-
erException at line 405 because it passes a null value input argument to map. Even
though T2 covers more lines, the combination of approach level and branch distance returns
the same fitness value for both of these test cases: approach level is 2 (nodes 407-408 and
410), and branch distance cannot be helpful in this case as the last covered predicate does
not change the execution path away from covering the target line and also the execution
stops before covering the next predicate. This is because these two heuristics assume that
each basic block is atomic, and by covering line 404, it means that lines 405 and 406 are
covered, as well.

3.2 Secondary Objective

The goal of the Basic Block Coverage (BBC) secondary objective is to prioritize the test
cases with the same fitness value (i.e., same approach level and branch distance) according
to their coverage within the basic blocks between the closest covered control dependency
and the target statement. At each iteration of the search algorithm, test cases with the same
fitness value are compared with each other using BBC. Listing 3 presents the pseudo-code
of the BBC calculation. Inputs of this algorithm are two test cases T1 and T2, which both
have the same approach level and branch distance values (calculated either using crash
reproduction or unit test generation fitness functions), as well as line number and method
name of the target statement. This algorithm compares the coverage of basic blocks on the
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Listing 3 BBC secondary objective computation algorithm

path between the last control dependent node executed by both of the given tests and the
basic block that contains the target statement (called effective blocks hereafter). If T1 and
T2 do not cover any control dependency of the target block, BBC uses the entry point of the
CFG of the given method instead as the starting point of the effective blocks’ path. If BBC
determines there is no preference between these two test cases, it returns 0. Also, it returns
a value < 0 if T1 has higher coverage compared to T2, and vice versa. A higher absolute
value of the returned integer indicates a bigger distance between the given test cases.

In the first step, BBC detects the effective blocks that are fully covered by each given
test case (i.e., the test covers all of the statements in the block) and saves them in two sets
called FCB1 and FCB2 (lines 4 and 5 in Listing 3). Then, for each of the tests T1 and T2,
it detects the closest semi-covered effective block (i.e., the closest basic block to the target
statement where the test covers the first line but not the last line of the block) and stores
them as SCB1 and SCB2, respectively (lines 6 and 7). The semi-covered blocks indicate the
presence of implicit branches.

BBC can prioritize given tests in two scenarios: Scenario 1, both tests get stuck in the
middle of the same basic block (i.e., they both have the same closest semi-covered basic
block), or, Scenario 2, one of the tests throws an exception in an effective basic block while
the other test fully covers this block.

Scenario 1 Line 9 in Listing 3 checks if the first scenario is true by determining two con-
ditions. First, BBC checks if both tests have the same semi-covered basic block. Then, it
examines if fully covered basic blocks of one of the given tests are equal or the subset of
the other test. If the second condition is not fulfilled, it means that each of these tests has
one covered block that the other one does not cover, and thereby they achieve their semi-
covered basic block from different paths. In this case, BBC cannot find the better test as
we do not know which path can lead to covering the target statement. If these two condi-
tions are fulfilled, BBC checks if one of the tests has a higher line coverage in the identified
SCB (lines 10 to 13). If this is the case, BBC will return the number of lines in this block
covered only by the winning test case. If the lines covered are the same for T1 and T2
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(i.e., coveredLines1 and coveredLines2 have the same size), there is no difference
between these two test cases and BBC returns value 0 (line 13).

Scenario 2 Line 14 in Listing 3 checks if the effective blocks covered by one test are a
subset of the other one. This is true if all of the fully-covered blocks of one test are a subset
of fully covered blocks of the other one. Also, the semi-covered block of this test must be
among the fully-covered blocks of the test with more coverage (i.e., winner test). In this
case, BBC returns the number of blocks that are only fully covered by the winner test case
(line 15). If BBC determines T2 wins over T1, the returned value will be positive, and vice
versa.

Finally, if each of the given tests has a unique covered block in the given method (i.e., the
tests cover different paths in the method), BBC cannot determine the winner and returns 0
(lines 16 and 17) because we do not know which path leads to the target block. Even if T1
and T2 reach a particular basic block from different paths in the CFG and both throw excep-
tions in different lines, BBC returns 0 and does not select the one with the more coverage in
the closest basic block as the winner. The rationale behind this behavior of BBC is to pro-
vide an equal chance for these two tests to evolve as we do not know which path covered by
each of these tests has more potential to help the search process to get closer to the target
line. If BBC always selects the test with more coverage in the nearest basic block, even if
it covers another path, we are negatively impacting the diversity of the tests chosen for the
next generation, thereby reducing the search process’s exploration ability.

Example When giving two tests with the same fitness value (calculated by the primary
objective) T1 and T2 from our motivation example to BBC with target method fromMap
and line number 413, this algorithm compares their fully and semi-covered blocks with
each other. In this example, both T1 and T2 cover the same basic blocks: the fully covered
block is 403 and the semi-covered block is 404-406. So, here the conditions in Scenario
1 are fulfilled. Hence, BBC checks the number of lines covered by T1 and T2 in block
404-406. Since T1 stopped its execution at line 404, the number of lines covered by this
test is 1. In contrast, T2 managed to execute two lines (404 and 405). Hence, BBC returns
size(coveredLines2)−size(coveredLines1) = 1. The positive return value indicates that
T2 is closer to the target statement, and therefore, it should have a higher chance of being
selected for the next generation.

Branchless Methods BBC can also be helpful for branchless methods. These methods do
not contain any branching statement (e.g., if conditions or for loops), and thereby theoreti-
cally, covering the first line in these methods leads to covering all of the other lines, as well.
In other words, by ignoring the Entry and Exit nodes, CFGs of branchless methods con-
tain only one node (i.e., basic block) without any edges. For instance, methods from frames
1 and 2 in Fig. 2 are branchless. The absence of branches in these methods means that there
are no control dependent nodes in them, and thereby approach level and branch distance
cannot guide the search process in these cases if the generated tests throw implicit excep-
tions in the middle of these methods. However, in contrast with these two heuristics, BBC
can guide the search process toward covering the most in-depth statement in these cases. As
an example, if tests T1 and T2 both throws implicit branches in the middle of the only basic
block (b0) of branchless method m(), BBC enters the Scenario 1 (FCB1 = FCB2 = ∅ and
SCB1 = SCB2 = {b0}) and examines if one of the tests has more lines covered in b0.
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Fig. 2 Distribution of the usefulness of BBC activations per fitness evaluations. The usefulness is defined as
the number of BBC evaluations returning a non-zero value divided by the number of activations. Grey points
denote fitness evaluations without any BBC activation

3.3 Application of BBC

The time complexity of BBC is O(N × E × log V ) where E and V are the numbers of
edges and vertices of the CFG of the given method, respectively; and N is the number of
semi-covered basic blocks calculated by semiCoveredBlocks method at lines 6 and 7
of Listing 3. This complexity stems from the computation of the closest semi-covered basic
blocks in Line 12 of Listing 3. In this procedure, BBC measures the shortest path between
each semi-covered basic block and the target basic block (i.e., the block containing the
given target line) using Dijkstra’s shortest path algorithm, which has the time complexity of
O(E × log V ).

Given the complexity of BBC, applying this secondary objective for any generated tests
with the same approach level and branch distance may negatively impact the search pro-
cess’s efficiency. In the following paragraphs, we discuss this potential negative impact on
search-based crash reproduction and unit test generation.

3.3.1 Search-Based Crash Reporduction

The crash reproduction search process can be guided by either WeightedSum or STDistance.
As discussed in Section 2.3, both of these fitness functions heavily rely on approach level
and branch distance. Hence, BBC can be helpful in the crash reproduction search process.
Since the crash reproduction search process’s goal is to cover a specific path in the control
dependent graph, which is indicated by the given stack trace, we apply BBC without any
limitation on any case that includes two test cases with the same (and nonzero) approach
level and branch distance.

3.3.2 Search-Based Unit Test Generation

In contrast with crash reproduction, the unit test generation search process has multiple
statements and branches to cover simultaneously. In DYNAMOSA, each line or branch to
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cover is an objective of the search. Hence, the number of times that BBC is applied as the
secondary objective is higher compared to crash reproduction. Therefore, we should limit
the number of times that BBC is applied in this algorithm. We introduce two parameters to
bring this limitation: SLEEP TIME and USAGE RATE.

SLEEP TIME When DYNAMOSA adds a target to the active search objectives, the target will
stay active until the search process covers it. Some of the targets are easy to cover, and
thereby, approach level and branch distance can simply cover them without BBC. However,
BBC can help in harder cases where approach level and branch distance cannot cover them
in a certain time. SLEEP TIME makes sure that BBC is only applied for the hard-to-cover
search objectives. If we set this parameter to t seconds, DYNAMOSA uses BBC secondary
objective only for search objectives that are active for more than t seconds.

USAGE RATE Like any other evolutionary-based algorithm, the unit test generation search
process needs to maintain a balance between the exploration and exploitation. The former
indicates the diversity in the solutions (i.e., generated tests execute new paths in the code);
the latter indicates searching the solutions in the existing ones’ neighborhood (i.e., the
search process should generate tests similar to the existing ones). By applying BBC, we
improve the exploitation ability of the search process. However, the over-application of BBC
may negatively impact the exploration ability of the search process. USAGE RATE makes
sure that BBC does not hinder this balance. Higher USAGE RATE means that there is a
higher chance of BBC application during the search process. Assume we set p ∈ [0, 1] as
our USAGE RATE. Any time that the search process generates two test cases with the same
approach level and branch distance for a hard-to-cover target (i.e., target which stays as an
active objective in DYNAMOSA for more than SLEEP TIME), BBC will be used with the
probability of p.

Moreover, by default, EVOSUITE has eight types of search objectives (Rojas et al. 2015):
line coverage, which aims to cover maximum lines in the given CUT; branch coverage,
which aims to cover maximum branches in the CUT; exception coverage, which aims to
maximize the number of exceptions captured by the generated tests; weak mutation, which
aims to generate tests that kill the maximum number of mutants (in weak mutation, a mutant
is considered killed if executing one of the generated tests on the mutant leads to a different
state compared to the execution on the given CUT); output coverage, that aims for gener-
ating tests that drive the most diverse outputs; method coverage, which aims to cover all of
the methods in the given CUT; no-exception Method Coverage, checks if each of the meth-
ods in the CUT is called directly by one of the tests and this invocation does not lead to
any exception; and direct branch coverage that makes sure that each branch in the public
methods of CUT is covered by a direct call from one of the generated tests.

Since BBC aims to help the search process relying on the approach level and branch
distance in covering lines and branches that cannot be executed with the tests generated
by DYNAMOSA, this secondary objective is only triggered when two tests have the same
fitness value either for a non-covered line coverage or branch coverage objective. Hence,
BBC is not involved in segments of the search process in which two tests are getting the
same fitness value for other kinds of objectives such as exception coverage. Thereby, despite
the fact that BBC prioritizes tests without throwing implicit exceptions, since this secondary
objective is not triggered for objectives other than line coverage and branch coverage, it does
not have any negative impact on covering other search objectives (e.g., exception coverage).
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4 Empirical Evaluation

Before evaluating the impact of BBC, we want to assess its potential usefulness by answer-
ing the following research question:
RQ 0 How frequent are implicit branches in a search-based test case generation process?

This research question serves as a preliminary analysis before the full evaluation of the
impact of BBC on search-based unit test generation and search-based crash reproduction. To
answer it, we consider a special configuration of DYNAMOSA, currently the best algorithm
for unit test generation, where the executions of the BBC algorithm described in Listing 3 are
monitored. We choose DYNAMOSA, a many-objectives algorithm, because, unlike search-
based crash reproduction, it targets each line and branch of a class under test independently,
allowing us to collect more data about the execution of BBC for the different objectives.

To assess the impact of BBC on search-based unit test generation, we perform an
empirical evaluation to answer the following research questions:
RQ 1 What is the impact of BBC on search-based unit test generation?

RQ 1.1 What is the impact of BBC on the structural coverage effectiveness of the
unit tests?

RQ 1.2 What is the impact of BBC on the output coverage of the unit tests?
RQ 1.3 What is the impact of BBC on the fault finding capabilities of the unit tests?
RQ 1.4 What is the impact of BBC on the structural coverage efficiency of the unit

tests?
In these RQs, we want to evaluate the effect of BBC on DYNAMOSA. As for other

algorithms, DYNAMOSA relies on the approach level and branch distance to evaluate the
progress of the search process. Previous research has shown that it outperforms other search-
based and guided random approaches (Campos et al. 2018; Devroey et al. 2020; Kifetew
et al. 2019; Molina et al. 2018; Panichella et al. 2018a, b). We compare DYNAMOSA for
11 different configurations of BBC in terms of structural coverage effectiveness (RQ 1.1).
Since a change in the structural coverage of a class might impact the data flow, we also
study the outputs produced by the different tests (RQ 1.2). Then, we look at the fault finding
capabilities using weak mutation and real faults from the DEFECTS4J collection (RQ 1.3).
Finally, we study the structural coverage efficiency of BBC (RQ 1.4).

Similarly, for search-based crash reproduction, we answer the following research ques-
tions:
RQ 2 What is the impact of BBC on search-based crash reproduction?

RQ 2.1 What is the impact of BBC on the crash reproduction effectiveness?
RQ 2.2 What is the impact of BBC on the crash reproduction efficiency?

In these two RQs, we want to evaluate the effect of BBC on the existing fitness functions,
namely STDistance and WeightedSum, from two perspectives: the crash reproduction ratio
of the different configurations (RQ 2.1) and the time required to reproduce a crash (RQ 2.2).

In Sections 4.1 and 4.2 we will detail the experimental setup for respectively the study
on unit test generation (RQ 0 and RQ 1) and crash reproduction (RQ 2).

4.1 Setup for search-based unit test generation (RQ 0 and RQ 1)

4.1.1 Implementation

We implemented BBC as a secondary objective (called BBCOVERAGE) in EVO-
SUITE (Fraser and Arcuri 2011), the state-of-the-art tool for search-based unit test gen-
eration. As discussed in Section 3.3.2, since BBC impacts the exploration-exploitation
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trade-off and efficiency of the search process, we also defined two additional parame-
ters for SLEEP TIME (BBC SLEEP with a default value of 60 seconds) and USAGE RATE

(BBC USAGE PERCENTAGE with a default probability of 0.5). Our implementation is
openly available at https://github.com/pderakhshanfar/evosuite.

4.1.2 Classes under test selection

We selected classes under test from the latest version of DEFECTS4J (v.2.0.0) (Just et al.
2014), a collection of reproducible failures coming from open source projects with the iden-
tification of the corresponding faulty classes. DEFECTS4J has been used in other studies to
assess the coverage and the effectiveness of unit-level test case generation (Ma et al. 2015;
Panichella et al. 2018b; Shamshiri et al. 2015), program repair (Smith et al. 2015; Martinez
and Monperrus 2016), fault localization (Pearson et al. 2017; Le et al. 2016), and regression
testing (Noor and Hemmati 2015; Lu et al. 2016).

We selected the ten most recent bugs from the 17 available projects for a total of 225
faulty classes, used as classes under test in our evaluation. This offers a good balance
between the number of repetitions (i.e., statistical power) of each configuration and number
of cases (i.e., generalization) (Arcuri and Briand 2014).

Since EVOSUITE may face inevitable challenges for generating tests for some particular
classes (Xiao et al. 2011; McMinn 2011; Fraser and Arcuri 2014), we performed a trial with
default parameters, on all of the classes to filter out the ones for which EVOSUITE cannot
generate any test, as recommended by related work (Campos et al. 2018; Molina et al. 2018;
Panichella et al. 2018b). We filtered out six classes according to our trial experiment results.
In three of these classes, EVOSUITE could not finish the class instrumentation. For the other
two, DYNAMOSA could not find any search objective. Finally, EVOSUITE failed to generate
tests for a class because of missing classes. By filtering these classes, we performed our
main experiment on the 219 remaining cases. Table 1 provides more information about the
classes selected for the evaluation.

4.1.3 Parameter settings

To evaluate the impact of BBC secondary objective on search-based unit test generation,
first, we should set values for SLEEP TIME and USAGE RATE (explained in Section 3.3.2).
To find the optimum SLEEP TIME, we performed a pre-analysis on a subset of subjects. We
have randomly selected 45 classes (20% of our subjects) for this pre-analysis. We ran DY-
NAMOSA on each of the sampled classes for 30 times and collected the time required by
the search process for covering each objective. These collected results indicate that DYNA-
MOSA can cover more than 85% of the objectives in 60 seconds. For this reason, we have
set SLEEP TIME to 60 seconds for our experiments.

For our pre-analysis (RQ 0), we have enabled BBC (USAGE RATE= 1.0) after 60 seconds
(with an additional setting to record the execution results of BBC) to evaluate the number
of implicit branches occurring during the search and the number of times BBC could help
overcoming those implicit branches. Furthermore, to draw a comparison between setting
different USAGE RATE, we have used ten different values of this parameter in our main
experiment (RQ 1): USAGE RATE ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

Hence, for the main experiment, we have executed DYNAMOSA and one plus ten con-
figurations of BBC on 219 classes for 30 rounds of execution with the search budget of
10 minutes. Also, we have executed DYNAMOSA on 45 classes with the same number of
repetition and search budget for finding the optimum SLEEP TIME. In total, we ran 80,190

https://github.com/pderakhshanfar/evosuite
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independent executions to answer RQ 0 and RQ 1. These executions took about 12 days
overall.

4.1.4 Data collection

To evaluate the potential impact of BBC (RQ 0), we collected for each line and branch
objective: the number of times its fitness has been evaluated, and the number of times BBC
has been called, activated (i.e., the call effectively led to an evaluation of the BBC, line 13
or 15 in Listing 3), and useful (i.e., the call to BBC has returned a non-zero value). When
BBC is useful, it indicates that at one or both of the test throw an implicit exception in the
middle of a basic block in the method of search objective (i.e., line or branch coverage
objective).

We compare BBC to DYNAMOSA using branch coverage for RQ 1.1 and RQ 1.4 for 30
rounds of execution. Branch coverage provides an indication about the structural coverage
by looking at the percentage of branches covered by the executions of the test cases in the
class under test. We recorded the value of the branch coverage every ten seconds to see how
it evolves over time and answer RQ 1.4.

For RQ 1.2, we consider output coverage and implicit exceptions. Output coverage
(Alshahwan and Harman 2014) denotes the diversity of the outputs of the different methods
of the class under test. It provides information about the data output coverage of the gener-
ated tests by looking at how many pre-defined abstract values (i.e., partitions of the output
domain) are returned by the methods of the class under test (Rojas et al. 2015). For instance,
a method returning integer value has to return negative, zero, and positive values (when the
tests are executed) to satisfy the output coverage criterion.

In addition to (expected) outputs, we consider implicit exceptions by looking at the num-
ber (e) of top-level methods in the class under test throwing an undeclared (i.e., runtime)
exception implicitly (i.e., without any throw new instruction). For one execution, we
compute the implicit exception coverage as the ratio between e and the highest value of e

among the all the executions of the different BBC configurations for that class.
Since BBC addresses the challenge of handling implicit branches for search-based unit

test generation, we expect it to impact both the output coverage and the number of methods
throwing an implicit exception.

We rely on weak mutation and real faults to assess the fault findings capabilities of the
generated tests (RQ 1.3). Weak mutation score (Howden 1982; Papadakis and Malevris
2011) gives the percentage of mutants (i.e., artificially injected faults) for which at least one
test triggers a different program state, compared to the original program, directly after the
execution of the mutated statement. Weak mutation is a viable cheaper alternative to strong
mutation, which requires an additional propagation of the erroneous state to the output of
the program (Offutt and Lee 1994). For our evaluation, weak mutation allows us to assess
the diversity of runtime states, allowing to catch more faults, when using BBC. We use the
default set of weak mutation operators available in EVOSUITE (Fraser and Arcuri 2015b):
delete call, delete field, insert unary operator, replace arithmetic operator, replace bitwise
operator, replace comparison operator, replace constant, and replace variable.

Additionally, we use real faults from the DEFECTS4J benchmark to compare the effective
fault finding capabilities of tests generated using BBC. We executed all of the 11 configu-
rations on the buggy versions of the software, and next, we check if the tests generated by
each configuration can throw the same exception as the bug exposing stack traces, which
are indicated by DEFECTS4J. The rationale behind running all of the configurations only
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on the buggy versions, and not the fixed versions, is to have a realistic scenario. In a real-
istic scenario, developers are neither aware of the bug, nor have access to the fixed version.
In this scenario, an automated test generation tool can help developers if it generates tests
that throw an exception revealing the bug. Since EVOSUITE can detect the assertion-based
failures only by running it on the fixed version (Fraser and Arcuri 2015a), we limited our
comparison for fault detection only on the 92 faults that a non-assertion error can expose.

4.1.5 Data analysis

For each class under test, we use the Vargha-Delaney Â12 statistic (Vargha and Delaney
2000) to examine the effect size of differences between using and not using BBC for branch,
output, and implicit exception coverage, and weak mutation score (RQs 1.1-1.3). For a
pair of factors (A,B) a value of Â12 > 0.5 indicates that A is more likely to achieve a
higher coverage or mutation score, while a value of Â12 < 0.5 shows the opposite. Also,
Â12 = 0.5 means that there is no difference between the factors. We used the standard
thresholds (Vargha and Delaney 2000) for interpreting the Â12 magnitude: 0.56 (small),
0.64 (medium), and 0.71 (large). To assess the significance of effect sizes (Â12), we apply
the non-parametric Wilcoxon Rank Sum test, with α = 0.01 for the Type I error.

We also rank the different configurations of BBC, based on their coverage and weak
mutation score, using Friedman’s non-parametric test for repeated measurements with a
significance level α = 0.05 (Garcı́a et al. 2009) (RQs 1.1-1.3). This test is used to test
the significance of the differences between groups (treatments) over the dependent variable
(here, coverage and weak mutation score). We further complement the test for significance
with Nemenyi’s post-hoc procedure (Japkowicz and Shah 2011; Panichella 2021).

Finally, since fault coverage (RQ 1.3) has a dichotomic distribution (i.e., a generated
test exposes the fault or not), we use the Odds Ratio (OR) to measure the impact of each
BBC configuration on the real faults coverage. A value OR > 1 in a comparison between a
pair of factors (A,B) indicates that the application of factor A increases the fault coverage,
while OR < 1 indicates the opposite. Also, a value of OR = 1 indicates that both of the
factors have the same performance. We apply Fisher’s exact test, with α = 0.01 for the Type
I error, to assess the significance of results.

4.2 Setup for search-based crash reproduction (RQ 2)

4.2.1 Implementation

Since RECORE and EVOCRASH are not openly available, we implement BBC in BOTSING,
an extensible, well-tested, and open-source search-based crash reproduction framework
already implementing the WeightedSum fitness function and the guided initialization, muta-
tion, and crossover operators. We also implement STDistance (RECORE fitness function) in
this tool. BOTSING relies on EVOSUITE for code instrumentation and test case generation
by using evosuite-client as a dependency. We also implement the STDistance fitness
function used as baseline in this paper.

4.2.2 Crash selection

We select crashes from JCRASHPACK (Soltani et al. 2020), a benchmark containing hard-
to-reproduce Java crashes. We apply the two fitness functions with and without using BBC
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as a secondary objective to 124 crashes, which have also been used in a recent study (Der-
akhshanfar et al. 2020). These crashes stem from six open-source projects: JFreeChart,
Commons-lang, Commons-math, Mockito, Joda-time, and XWiki. For each crash, we apply
each configuration on each frame of the crash stack traces. We repeat each execution 30
times to take randomness into account, for a total of 114,120 independent executions. We
run the evaluation on two servers with 40 CPU-cores, 128 GB memory, and 6 TB hard drive.
In total, these executions took about 5 days.

4.2.3 Parameter settings

We run each search process with five minutes time budget and set the population size to
50 individuals, as suggested by previous studies on search-based test generation (Panichella
et al. 2018b). Moreover, as recommended in prior studies on search-based crash reproduc-
tion (Soltani et al. 2018), we use the guided mutation with a probability pm = 1/n (n =
length of the generated test case), and the guided crossover with a probability pc = 0.8 to
evolve test cases. We do note that prior studies do not investigate the sensitivity of the crash
reproduction to these probabilities. Tuning these parameters should be undertaken as future
work.

4.2.4 Data collection

To evaluate the crash reproduction ratio (i.e., the ratio of success in crash reproduction in 30
rounds of runs) of different assessed configurations (RQ 2.1), we follow the same procedure
as previous studies (Derakhshanfar et al. 2020; Soltani et al. 2018): for each crash C, we
detect the highest frame that can be reproduced by at least one of the configurations (rmax).
We examine the crash reproduction ratio of each configuration for crash C targeting frame
rmax .

To evaluate the efficiency of different configurations (RQ 2.2), we analyze the time
spent by each configuration on generating a crash reproducing test case. We do note that the
extra pre-analysis and basic block coverage in BBC is considered in the spent time. Since
measuring efficiency is only possible for the reproduced crashes, we compare the efficiency
of algorithms on the crashes that are reproduced at least once by one of the algorithms. We
assume that the algorithm reached the maximum allowed budget (5 minutes) in case it failed
to reproduce a crash.

4.2.5 Data analysis

As for real fault coverage (RQ 1.3), crash reproduction data (RQ 2.1) has a dichotomic
distribution (i.e., an algorithm reproduces a crash C from its rmax or not), we use the Odds
Ratio (OR) to measure the impact of each algorithm in crash reproduction ratio for each
crash. A value OR > 1 in a comparison between a pair of factors (A,B) indicates that
the application of factor A increases the crash reproduction ratio, while OR < 1 indicates
the opposite. Also, a value of OR = 1 indicates that both of the factors have the same
performance. We apply Fisher’s exact test, with α = 0.01 for the Type I error, to assess the
significance of results.

For RQ 2.2, we use the Vargha-Delaney Â12 statistic (Vargha and Delaney 2000) with
the non-parametric Wilcoxon Rank Sum test to examine differences between using and not
using BBC for efficiency. For a pair of factors (A,B) a value of Â12 > 0.5 indicates that A

reproduces the target crash in a longer time, while a value of Â12 < 0.5 shows the opposite.
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Also, Â12 = 0.5 means that there is no difference between the factors. We used the standard
thresholds (Vargha and Delaney 2000) for interpreting the Â12 magnitude: 0.56 (small),
0.64 (medium), and 0.71 (large).

4.3 Replicability

We enable the replicability of our results by providing replication packages on Zenodo
(https://zenodo.org) for RQ 0 and RQ 1 (Derakhshanfar and Devroey 2021) and RQ 2 (Der-
akhshanfar and Devroey 2020). Those replication packages include the classes under test
and crashes used for the evaluation, the evaluation infrastructure (including documentation
and scripts to re-run the evaluation), and the data analysis procedure used to produce the
graphs, tables, and numbers reported in this paper.

5 Results

5.1 Potential impact of BBC (RQ 0)

Table 2 provides the general statistics of the preliminary analysis answering RQ 0 per
project. The number of branch and line objectives ranges from 526 for Codec to 8,108 for
JacksonCore. In total, the number of fitness evaluations per objective ranges between
1 and 1,143,620 with an average of 30,111.81 evaluations. BBC has been called between
1 and 1,681,329 times per objective with an average of 34,988.58 calls. It is interesting to
note that, since the evaluation of an objective may require to compare multiple test cases,
BBC can be called multiple times for each fitness evaluation. BBC has been effectively acti-
vated up to 1,365,526 (average of 9,472.140) times per objective, and has been useful up to
798,005 (average of 354) times per objective.

Figure 2 provides a summary of the usefulness of BBC. Each data point corresponds to
the percentage of useful calls to BBC per fitness evaluation, measured for one objective and
one execution out of 30. On average, BBC has been useful 2.5 times (σ = 3.17 times) per
fitness evaluation, with a maximum of 4,0145 times for a single fitness evaluation (which
happens when multiple test cases have to be compared).

Summary (RQ 0) Implicit branches are quite common. Our results show that on average,
BBC has been activated (i.e., the call to BBC effectively led to an evaluation) 9,472.140
times with a standard deviation σ = 40, 567.40, denoting big variations of the activation
among the different objectives. The usefulness rate per activation is 2.39% on average (σ =
12.09%), confirming that not all activations can effectively lead to a distinction between
two test cases w.r.t. to their partial coverage of basic blocks. Those results tend to confirm
our design choice to parameterize the activation of BBC using an activation probability.

5.2 Search-based unit test generation (RQ 1)

We first discuss the results of applying BBC as a secondary objective for unit test generation
using DYNAMOSA. Contrarily to crash reproduction, which seeks to cover only a small
number of branches, unit test generation targets all the branches in a class under test.

Branch coverage effectiveness (RQ 1.1) Figure 3a reports the branch coverage of the dif-
ferent classes under test for all the 30 test suites for the different configurations of BBC.

https://zenodo.org


Empir Software Eng          (2022) 27:192 Page 21 of 41  192 

Ta
bl
e
2

St
at

is
tic

s
ab

ou
tt

he
nu

m
be

r
of

ob
je

ct
iv

es
(O

bj
.)

,f
itn

es
s

ev
al

ua
tio

ns
(F
it
ne
ss

ev
al
.)

,c
al

ls
to

B
B
C

ev
al

ua
tio

ns
(B

B
C
ca
lls

),
ca

lls
ef

fe
ct

iv
el

y
le

ad
in

g
to

an
ev

al
ua

tio
n

of
th

e
B
B
C

(B
B
C
ac
ti
ve

),
an

d
ev

al
ua

tio
ns

re
tu

rn
in

g
a

no
n-

ze
ro

va
lu

e
(B

B
C
us
ef
ul

)

Pr
oj

ec
t

O
bj

.
Fi

tn
es

s
ev

al
.

B
B

C
ca

lls
B

B
C

ac
tiv

e
B

B
C

us
ef

ul

c
o
u
n
t

σ
c
o
u
n
t

σ
c
o
u
n
t

σ
c
o
u
n
t

σ

C
ha

rt
34

92
17

,5
22

.5
9

69
,4

78
.2

3
15

,7
69

.4
4

10
8,

89
6.

01
2,

26
7.

34
15

,4
09

.4
5

13
3.

66
4,

98
0.

58

C
li

96
3

46
,3

95
.5

1
14

4,
05

7.
34

39
,9

27
.0

5
17

9,
25

5.
85

5,
30

0.
18

37
,1

89
.2

9
2.

74
43

.1
6

C
lo

su
re

47
79

23
,8

64
.6

5
33

,5
37

.3
0

34
,8

80
.6

9
59

,7
87

.4
3

8,
71

6.
67

28
,4

10
.0

0
44

6.
23

6,
55

6.
16

C
od

ec
52

6
85

,8
59

.1
4

13
8,

08
7.

36
11

8,
52

2.
38

24
9,

49
5.

43
49

,4
34

.5
0

16
1,

61
0.

84
0.

00
0.

07

C
ol

le
ct

io
ns

91
5

41
,4

04
.6

6
40

,8
11

.8
9

78
,1

62
.3

3
80

,6
03

.5
8

2,
39

1.
87

13
,3

82
.0

0
71

3.
11

6,
70

6.
91

C
om

pr
es

s
16

02
27

,8
70

.0
1

56
,4

41
.0

2
25

,6
10

.4
6

58
,9

55
.8

4
10

,4
77

.9
2

35
,8

81
.9

0
0.

06
2.

13

C
sv

12
79

21
,7

97
.1

6
66

,8
12

.7
4

21
,8

92
.0

9
89

,9
51

.2
7

1,
61

7.
00

16
,8

31
.4

0
51

.6
6

56
1.

60

G
so

n
22

72
50

,3
07

.2
4

10
5,

66
8.

55
47

,4
28

.9
2

14
3,

74
3.

06
12

,5
15

.7
4

69
,4

60
.4

9
97

2.
59

22
,5

47
.1

1

Ja
ck

so
nC

or
e

81
08

16
,5

46
.9

9
32

,5
07

.9
3

16
,4

06
.2

5
49

,0
33

.4
1

10
,2

33
.0

4
34

,6
86

.7
8

24
0.

63
5,

20
2.

30

Ja
ck

so
nD

at
ab

in
d

49
32

19
,7

79
.3

6
44

,5
33

.6
0

26
,8

37
.3

4
72

,3
99

.4
1

6,
32

3.
01

21
,3

87
.2

4
43

6.
74

6,
52

3.
39

Ja
ck

so
nX

m
l

11
30

30
,8

98
.5

7
29

,4
90

.0
9

55
,6

75
.3

8
64

,7
63

.1
5

35
,7

23
.2

0
47

,3
64

.5
8

19
5.

75
1,

21
0.

80

Js
ou

p
24

58
58

,2
16

.1
4

11
7,

96
4.

61
82

,1
36

.1
8

16
8,

88
0.

68
2,

08
0.

66
17

,0
89

.7
5

87
.0

3
3,

17
8.

65

Jx
Pa

th
23

48
51

,5
78

.3
0

10
3,

32
1.

87
29

,5
19

.4
6

10
4,

76
2.

47
7,

40
2.

75
42

,8
28

.1
8

4.
72

64
.6

4

L
an

g
17

49
37

,8
68

.9
6

93
,7

94
.1

7
20

,2
47

.5
8

60
,9

78
.1

3
1,

33
8.

74
12

,5
10

.8
4

2.
91

38
.9

1

M
at

h
13

09
27

,9
17

.2
9

48
,2

62
.6

4
49

,1
97

.3
2

84
,6

97
.4

7
21

,3
53

.5
9

45
,4

62
.2

8
2,

71
0.

62
19

,1
46

.6
2

M
oc

ki
to

58
4

91
,8

40
.1

9
11

3,
78

7.
23

15
6,

25
6.

50
21

6,
60

5.
91

42
,9

01
.5

6
95

,7
36

.1
4

60
8.

66
4,

31
2.

73

T
im

e
18

91
19

,1
80

.1
3

45
,6

16
.9

0
21

,6
28

.3
1

68
,1

01
.7

4
1,

33
1.

23
11

,0
72

.5
8

90
.1

9
2,

31
9.

25

(a
ll)

40
33

7
30

,1
11

.8
1

71
,3

96
.3

4
34

,9
88

.5
8

10
0,

70
3.

53
9,

47
2.

14
40

,5
67

.4
0

35
4.

12
7,

91
3.

20



  192 Page 22 of 41 Empir Software Eng          (2022) 27:192 

Generally, the average branch coverage slightly improves when activating BBC as a sec-
ondary objective (from 74.5% for DYNAMOSA up to 76.1% for BBC 0.2, 0.4, 0.6, and 1.0).
Although small, this improvement is systematic across all BBC configurations according
to the effect sizes reported in Fig. 3b. BBC 0.6 gives the best results with a large positive
(Â12 > 0.5) effect size for 59 classes under test (against 0 large negative, Â12 < 0.5, effect
size), followed by BBC 0.2 with 59 classes (against 1 classes), and BBC 0.8 with 57 classes
(against 1 class).

Figure 4 provides a graphical representation of the ranking (i.e., mean ranks with con-
fidence interval) of the different BBC configurations. According to Friedman’s test, the
different treatments BBC 0.1 to 1.0 achieve significantly different branch coverage (p-values
< 0.01) compared to DYNAMOSA. Furthermore, the differences between the average ranks
of BBC 0.1 to 1.0 and the average rank of the baseline are larger than the critical distance
CD = 1.375 determined by Nemenyi’s post-hoc procedure. This indicates that BBC 0.1 to
1.0 achieves a significantly higher branch coverage than DYNAMOSA.

We analyzed the correlation between the effect sizes (Â12) of the best performing BBC
configuration (according to Friedman’s test with Nemenyi’s post-hoc procedure) and BBC
usefulness (presented in RQ 0). The result of this analysis indicates that there is a positive
correlation between the number of times that BBC could be useful (i.e., select a winner
between two given tests with the same approach level and branch distance) and the effect
that this secondary objective has on branch coverage improvement (Spearman’s ρ = 0.4
with a p-value < 0.6e − 10). Hence, in any case that BBC exposes that one generated
test is closer to the target line than another test with the same approach level and branch
distance (due to the implicit branch occurrence), there is a considerable chance that it helps
the search-based test generation process to generate tests with higher branch coverage.

To confirm if this observed correlation stems from the connection between the potential
implicit branches in the middle of basic blocks and improvement in the branch coverage,
we manually analyzed some cases in which BBC application leads to statistically significant
improvement in branch coverage achieved by the generated test. In this manual analysis, we
identified multiple potential implicit exceptions before the target lines and branches, which
are only covered by tests generated by utilizing BBC as a secondary objective.

Fig. 3 Branch coverage of the tests generated for the 219 classes under test (out of 30 executions) for different
configurations of BBC. The square (�) denotes the arithmetic mean, the bold line (—) is the median
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Friedman: 0.000 (Ha: Different) 

 Critical distance: 1.375

Mean ranks

bbc−0.1 − 5.51

bbc−0.2 − 5.52

bbc−0.4 − 5.56

bbc−0.7 − 5.67

bbc−0.6 − 5.68

bbc−0.8 − 5.78

bbc−0.9 − 5.83

bbc−0.5 − 5.91

bbc−1.0 − 5.97

bbc−0.3 − 6.22

DynaMOSA − 8.36

5 6 7 8 9

Fig. 4 Non-parametric multiple comparisons of the branch coverage using Friedman’s test with Nemenyi’s
post-hoc procedure

For instance, for the class under test com.fasterxml.jackson.databind.no-
de.TreeTraversingParser in JacksonDatabind-106, we see that tests gen-
erated by BBC configurations achieve a higher structural coverage against DYNAMOSA.
In the majority of runs, the tests generated by BBC managed to cover Lines 6 to 11 in
method nextToken() (Listing 4), while DYNAMOSA is not successful in covering these
lines. By looking at method nodeCursor.iterateChildren() (Listing 5), which
is called by nextToken() in line 6 of Listing 4, we see that this method may throw an
IllegalStateException at lines 4 and 12. Since DYNAMOSA does not have any
information about the branches in the other classes other than the class under test, it cannot
guide the search process to execute the method iterateChildren() without raising an
exception.

Output coverage and implicit exception coverage (RQ 1.2) The improvement of branch
coverage also leads to more output diversity, reported in Fig. 5a: from 54.2% for DYNA-
MOSA up to 55.5% for BBC 0.8. This improvement is also systematic across all BBC
configurations according to the effect sizes reported in Fig. 5b. BBC 0.6 give the best results

Listing 4 method nextToken() from JacksonDatabind-106



  192 Page 24 of 41 Empir Software Eng          (2022) 27:192 

Listing 5 method iterateChildren() in JacksonDatabind-106

with a large positive (Â12 > 0.5) effect size for 57 classes under test each (against 2 large
negative, Â12 < 0.5, effect sizes each), followed by BBC 0.1 and 0.5 with 54 classes (against
2 classes), and BBC 0.4 with 53 classes (against 2 classes).

The two target classes with large negative effect sizes on the output coverage are the same
classes for the different configurations of BBC: i.e., different versions of the class org.a-
pache.commons.cli.HelpFormatter in Cli-31 and Cli-32. Interestingly, all
BBC configurations achieve a statistically significant higher implicit runtime exception
coverage (i.e., undeclared runtime exceptions not explicitly thrown by a throw new
instruction) with a large effect size for the same class on the same buggy versions of Cli,
indicating that for this particular class, the loss of coverage of output values is compensated
by a higher number of methods throwing implicit runtime exceptions.

This could be explained by the fact that BBC favors test cases with a higher coverage of
basic blocks, but that are not able to reach the return statements of the methods under test
(e.g., if the values used by the test cause implicit runtime exceptions). There is however
no general correlation between the output coverage and the implicit exception coverage
(Spearman’s ρ = −0.008 with a p-value < 0.001).
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Fig. 5 Output coverage of the tests generated for the 219 classes under test (out of 30 executions) for different
configurations of BBC. The square (�) denotes the arithmetic mean, the bold line (—) is the median
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Same as RQ 1.1, we evaluated the correlation between the improvement of BBC in terms
of output coverage and BBC usefulness (presented in RQ 0). This analysis shows a positive
correlation between these two metrics (Spearman’s ρ = 0.3 with a p-value < 0.1e − 5).
As we explained, this observation stems from the correlation between branch coverage
and the output coverage achieved by each test: covering more lines and branches increases
the chance of seeing more diverse output from CUT. To support this hypothesis, we also
checked if there is a correlation between branch coverage and output coverage. Our anal-
ysis shows that branch coverage and output coverage are strongly correlated (Spearman’s
ρ = 0.6 with a p-value < 0.3e − 16).

Figure 6a reports the implicit runtime exception coverage of the generated tests. Implicit
exceptions are not declared in the method under test and are triggered when implicit
branches are executed. Results show that the average exception coverage increases when
using BBC as a secondary objective: from 75.1% when using DYNAMOSA up to 80.3% for
BBC 0.1 and 0.6. BBC 0.9 gives the best results with a large positive (Â12 > 0.5) effect size
for 67 classes under test (against 8 large negative, Â12 < 0.5, effect size), followed by BBC
0.6 with 66 classes (against 8 classes), and BBC 0.1 with 64 classes (against 7 classes).

The rankings in Fig. 7 indicate that BBC 0.1 to 1.0 perform well, with an average rank
much smaller than the baseline, both for output and exception coverage. The configurations’
average ranks differences with the average rank of the baseline are larger than the critical
distance CD = 1.375 determined by Nemenyi’s post-hoc procedure.

In contrast with branch coverage and output coverage, Spearman’s test does not show
any general correlation between BBC usefulness and implicit exception coverage (Spear-
man’s ρ = 0.04 with a p-value = 0.5). This result supports our discussion in Section 3:
since BBC is only triggered when DYNAMOSA compares tests regarding a line or branch
coverage search objective, it does not have any negative impact on other search objectives,
including the implicit exception coverage of the generated tests. We also analyzed some of
the exceptions that are only thrown by the tests generated using BBC. The remainder of this
section explains one of these instances.

Listing 6 shows an example of an implicit exception that is thrown significantly more
often when using BBC. DYNAMOSA managed to capture this exception in 9 our of 30
runs, while BBC 0.5 captured it in 23 out of 30 runs. This exception occurs in line 846

0.00

0.25

0.50

0.75

1.00

Dy
na

MOSA
bb

c−
0.

1
bb

c−
0.

2
bb

c−
0.

3
bb

c−
0.

4
bb

c−
0.

5
bb

c−
0.

6
bb

c−
0.

7
bb

c−
0.

8
bb

c−
0.

9
bb

c−
1.

0

Ex
ce

pt
io

n 
co

ve
ra

ge

0

40

80

120

bb
c−

0.
1

bb
c−

0.
2

bb
c−

0.
3

bb
c−

0.
4

bb
c−

0.
5

bb
c−

0.
6

bb
c−

0.
7

bb
c−

0.
8

bb
c−

0.
9

bb
c−

1.
0

configuration

C
ou

nt

magnitude
small

medium

large

Fig. 6 Exception coverage of the tests generated for the 219 classes under test (out of 30 executions) for
different configurations of BBC. The square (�) denotes the arithmetic mean, the bold line (—) is the median
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Friedman: 0.000 (Ha: Different) 
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Fig. 7 Non-parametric multiple comparisons of the coverage using Friedman’s test with Nemenyi’s post-hoc
procedure

of method linearCombination (Listing 7). This exception can be triggered only in
one specific case where the input arrays (a and b) both contain only one element. If these
two parameters do not have the same size, this method throws an explicit exception at line
838 (i.e., this line is formatted as throw new [...]). Since EVOSUITE can recognize
explicit exception throws in the CUT and convert them to explicit branches while generating
the control flow graphs, approach level and branch distance can guide the search process to
cover other lines after 839 by prioritizing tests that pass two arrays with the same size to
method linearCombination.

However, since the explicit branch was the only control-dependent branch for the target
line (line 846), the search process does not have any guidance to cover the following lines
(including the target line). Assume that test T1 generates input parameters a and b with size
0. Then, this method throws ArrayIndexOutOfBoundsException in one line before
the target line (line 845). This implicit branch will be hidden from the approach level and
branch distance heuristics. By adding BBC, the search process can differentiate these two
tests and help the search process to generate tests that can cover the following lines more
often. By having more tests that can cover the target line, the search process has a higher
opportunity to execute the target line, and thereby find the exception in this line.

Weak mutation score and real faults (RQ 1.3) As for branch and output coverage, acti-
vating BBC slightly improves the weak mutation score of the generated tests (reported in
Fig. 8a). BBC 0.4, 0.6 and 0.8 achieve the higher average mutation score with 74.6%, com-
pared to 73.2% for the baseline (DYNAMOSA). That improvement is also systematic across
the different configurations of BBC according to the effect sizes reported in Fig. 8b. BBC
0.5 gives the best results with a large positive (Â12 > 0.5) effect size for 54 classes under
test (against 0 large negative, Â12 < 0.5, effect size), followed by BBC 0.2 with 53 classes
(against 0 class), and BBC 0.4, 0.6, 0.7 and 0.9 with 51 classes each (against 0 class).

Looking at the ranking reported in Fig. 9, BBC 0.1 to 1.0 have an average rank much
smaller than the baseline. Those differences are larger than the critical distance CD = 1.375
determined by Nemenyi’s post-hoc procedure.

Listing 6 An implicit exception in MATH-3 which is thrown significantly more often by tests generated by
the search process utilizing BBC secondary objective
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Listing 7 method linearCombination from Apache Commons MATH

Moreover, we checked if we could find any correlation between the weak mutation
score and BBC usefulness (presented in RQ 0). This analysis shows a moderate correla-
tion between these two metrics (Spearman’s ρ = 0.37 with a p-value < 0.3e − 8). One
reason for this correlation could be the strong correlation between weak mutation score
and branch coverage (Spearman’s ρ = 0.91 with a p-value < 0.3e − 16). Thanks to BBC
secondary objective, the search-based test generation process can cover more lines and
branches, thereby killing the mutants in these newly covered lines.

Finally, we compare the fault revealing capabilities of the generated tests using DE-
FECTS4J. Table 3 presents the results for the different configurations of BBC and the
baseline (DYNAMOSA). In general, the tests reveal between 25 and 28 faults at least once in
30 rounds of executions out of the 92 faults considered (the selection procedure is detailed
in Section 4.1). For the faults that are revealed in at least one round, the average coverage
frequency (for 30 rounds of execution) varies between 22.25% (for BBC 0.1 and 1.0) and
23.04% (for BBC 0.7). The table also reports the number of faults for which a configuration
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Friedman: 0.000 (Ha: Different) 
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Fig. 9 Non-parametric multiple comparisons of the weak mutation score using Friedman’s test with
Nemenyi’s post-hoc procedure

performed better (odds ratio above 1) or worse (odds ratio below 1) than the DYNAMOSA
baseline with a significance level of 0.01. The best configuration are BBC 0.4, 0.5, 0.6, 0.8,
and 1.0 with 3 faults (against 0).

We manually analyzed the three faults that are captured significantly more often by
BBC. In all of them, we identified potential implicit branches before covering the target line
(i.e., the line in which the fault happens) that can prevent the classical and approach level
from guiding the search process towards covering these failures.

For instance, Listing 8 presents the stack trace that reveals a fault in JFreeChart.2

When selecting the XYPlot class as class under test, BBC configurations can throw this
exception significantly more often than tests generated by DYNAMOSA. This stack trace
has five frames that are pointing to a method in the target class (XYPlot): Lines 1, 4, 5, 6,
and 7 in Listing 8. By analyzing the methods in these frames, we can see that majority of
them are simple methods with one line except the first frame in Line 1 of Listing 8, which
points to method getDataRange that has about 100 lines of codes.

As we can see in Listing 9, the target line, in which the NullPointerException
occurs (Line 4493), is in an if condition which starts at Line 4472. The target line is
directly control-dependent on this condition. Hence, when a test fulfills the condition in
line 4472, the approach level and branch distance heuristics assume that the generated test
eventually will cover the target line (Line 4494), and thereby these two heuristics do not
provide any guidance for the test generation search process afterward. However, by taking
a closer look, we can see that even after entering the if condition, a test needs to, first,
call the combine method (in one of the Lines 4476, 4479, 4485, or 4488) and also call
either findDomainBounds (in Lines 4476 or 4479) or findRangeBounds (in Lines
4485 or 4488) before it can reach the target line. Each of these methods can throw explicit
exceptions. Since these methods are not part of the class under test, the search process is
unaware of those exceptions. Also, each of these methods calls multiple methods that can
also throw exceptions.

2See case CHART-4 in DEFECTS4J at https://github.com/rjust/defects4j/blob/master/framework/projects/
Chart/trigger tests/4

https://github.com/rjust/defects4j/blob/master/framework/projects/Chart/trigger_tests/4
https://github.com/rjust/defects4j/blob/master/framework/projects/Chart/trigger_tests/4
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Table 3 Real faults coverage of the different configurations with the number of faults covered at least
once in 30 runs (#) out of 92 faults, the average coverage frequency (f req., σ ), and the number of time a
configuration performed better (> 1) of worse (< 1) than DYNAMOSA with a significance level of 0.01

Config. Faults coverage Odds ratio

# f req. σ > 1 = 1 < 1

bbc-0.1 26 22.25% 38.84% 1 - -

bbc-0.2 27 22.79% 39.18% 2 - -

bbc-0.3 26 22.28% 39.02% 2 - 1

bbc-0.4 26 22.28% 38.66% 3 - -

bbc-0.5 25 22.68% 39.36% 3 - -

bbc-0.6 27 22.46% 38.86% 3 - -

bbc-0.7 26 23.04% 39.68% 2 - -

bbc-0.8 28 22.39% 38.75% 3 - -

bbc-0.9 25 22.57% 38.96% 2 - -

bbc-1.0 27 22.25% 38.97% 3 - -

DynaMOSA 26 21.49% 38.37% - - -

BBC can guide the test generation search process to execute these lines without any
exception and cover the target line. By covering the target line, the search process has the
opportunity to generate a test that throws a NullPointerException in this target line,
and thereby captures the fault.

Branch coverage efficiency (RQ 1.4). Figure 10a presents the tendency of the branch cov-
erage over time using the smoothed conditional means. Overall, BBC 0.5 tends to achieve a
higher branch coverage. This is confirmed by the number of classes for which we observe
a significant difference (with α = 0.01) in the coverage achieved, reported in Fig. 10b
and grouped by effect size (Â12) magnitude. Counts above (resp. below) 0 denote the num-
ber of classes for which we observe a positive (resp. negative) effect. After three minutes,
BBC 0.4 achieves a large (resp. medium) positive effect size for 34 (resp. 18) classes under

Listing 8 The fault in CHART-4 which is captured significantly more often by tests generated by the search
process utilizing BBC secondary objective
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Listing 9 method getDataRange from JFreeChart

test against 1 (resp. 0) large (resp. medium) negative effect sizes. Those numbers slightly
decrease over time with 27 (resp. 18) classes under test with a large (resp. medium) effect
size after exhaustion of the ten minutes search budget, for 1 (resp. 0) large (resp. medium)
classes with a negative effect size.

Summary (RQ 1) We see an improvement of the branch coverage of the generated tests
when activating BBC as a secondary objective in DYNAMOSA. This improvement in branch
coverage also leads to an increase of the output and exception coverage, and of the diversity
of runtime states (denoted by an increase of the weak mutation score). Among the different
configurations, BBC 0.5 gives the best results and those results remains stable over time. It
also leads to the coverage of three additional faults in DEFECTS4J without any loss com-
pared to the baseline. Giving our results, we can recommend using BBC 0.5 as a secondary
objective for unit test generation.
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Fig. 10 Evolution of the branch coverage of the tests generated for the 219 classes under test (out of 30
executions) for different configurations of BBC

5.3 Search-based crash reproduction (RQ 2)

Crash reproduction effectiveness (RQ 2.1) Figure 11 presents the crash reproduction ratio
of the search processes guided by STDistance (Fig. 11a) and WeightedSum (Fig. 11b),
with and without BBC as a secondary objective. This figure shows that, on average, the
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Fig. 11 Crash reproduction ratio (out of 30 executions) of fitness functions with and without BBC. The
square (�) denotes the arithmetic mean and the bold line (—) is the median

crash reproduction ratio of WeightedSum improves 3.3% when using BBC. This improve-
ment is higher for crash reproduction using STDistance. On average, the crash reproduction
ratio achieved by STDistance + BBC is 9.2% higher than STDistance without BBC. Higher
improvement in STDistance was expected as this fitness function relies more on the
approach level and branch distance heuristics for covering each of the frames in the given
stack trace. Also, in both of the fitness functions, the lower quartile of crash reproduc-
tion ratio has been improved by utilizing BBC. These improvements for WeightedSum and
STDistance are 19.1% and 31.7%, respectively.

Figure 12 depicts the number of crashes, for which BBC has a significant impact on
the effectiveness of crash reproduction guided by STDistance (Fig. 12a) and WeightedSum
(Fig. 12b). BBC significantly improves the crash reproduction ratio in 10 and 4 crashes
for fitness functions STDistance and WeightedSum, respectively. Notably, the application of
this secondary objective does not have any significant adverse effect on crash reproduction.
Tables 4 and 5 present the odds ratio and p-value in cases that BBC leads to a significant
improvement in crash reproduction ratios of WeightedSum and STDistance, respectively. As
we can see in these tables, the odds ratio values in all cases are lower or equal to 0.2, indi-
cating the high impact of BBC. Finally, we observed that BBC helps each of the STDistance
and WeightedSum to reproduce 3 new crashes that could not be reproduced without this
secondary objective.
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Fig. 12 Pairwise comparison of impact of BBC on each fitness function in terms of crash reproduction ratio
with a statistical significance < 0.01
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Table 4 Comparing the crash reproduction ratio between crash reproduction using WS and WS + BBC, for
cases where one of the configurations has a significantly higher crash reproduction ratio (p-value < 0.01)

Crash Reproduction ratio OR p-value

WeightedSum WeightedSum+BBC

LANG-54b 19 29 0.1 2.4659e-03

XCOMMONS-1057 17 27 0.2 7.4098e-03

XWIKI-12889 17 27 0.2 7.4098e-03

XWIKI-14556 11 24 0.2 1.4306e-03

Crash reproduction efficiency (RQ 2.2) Figure 13 illustrates the number of crashes, in
which BBC significantly affects the time consumed by the crash reproduction search pro-
cess. As Fig. 13b shows, BBC significantly improves the speed of crash reproduction guided
by WeightedSum in 54 crashes (43.5% of cases), while it does not lose efficiency in the
reproduction of any crash.

Similarly, Fig. 13a shows that BBC has a higher positive impact on the efficiency of
the search process guided by STDistance. It significantly reduces the time consumed by
the search process in 56 crashes (45.1% of cases), while it had no adverse impact on the
reproduction efficiency of any crash.

Figure 14 depicts the average improvements in the efficiency and effect sizes for crashes
where the difference in the consumed budget when using BBC or not was significant.
According to the right-side plot in Fig. 14a, BBC reduces the time consumed by the search
process guided by STDistance up to 98% (being 71.7% on average). Also, the left-side
plot indicates that the average effect size of differences between STDistance and STDis-
tance+BBC (calculated by Vargha-Delaney) is 0.102 (lower than 0.5 indicates that BBC
improved the efficiency). Figure 14b shows that the average improvement (right-side plot)

Table 5 Comparing the crash reproduction ratio between crash reproduction using STD and STD + BBC, for
cases where one of the configurations has a significantly higher crash reproduction ratio (p-value < 0.01)

Crash Reproduction ratio OR p-value

RecoreSTDistance RecoreSTDistance+BBC

LANG-54b 20 29 0.1 5.5791e-03

MATH-78b 10 21 0.2 9.2060e-03

TIME-7b 1 12 0.1 1.0508e-03

XWIKI-12667 16 30 0.0 1.6767e-05

XWIKI-13141 13 27 0.1 2.5073e-04

XWIKI-13196 19 30 0.0 3.1881e-04

XWIKI-13316 17 29 0.0 4.3102e-04

XWIKI-13916 19 30 0.0 3.1881e-04

XWIKI-14152 3 18 0.1 9.4143e-05

XWIKI-14556 0 24 0.0 3.2940e-11
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Fig. 13 Pairwise comparison of impact of BBC on each fitness function in terms of efficiency with a small,
medium, and large effect size Â12 < 0.5 and a statistical significance < 0.01

achieved by using BBC as the second objective of WeightedSum is 68.7%, and the average
effect size (left-side plot), in terms of the crash reproduction efficiency, is 0.104.

Summary (RQ 2) BBC improves the crash reproduction ratio for both of the WeightedSum
and STDistance fitness functions. This imnprovement is higher for STDistance as this fitness
function is more relied on approach level and branch distance. Moreover, BBC improves the
efficiency of the search process with both of the crash reproduction fitness functions.

6 Discussion

6.1 BBC for unit test generation

Increase in program state and return value diversity Using BBC as a secondary objec-
tive leads to a better branch coverage. Although small on average, the improvement is
systematic, as demonstrated by the effect sizes. More interestingly, BBC also leads to a
better output and implicit exception coverage. This is particularly interesting in a unit test-
ing context because it allows to capture more diverse returned values (including implicit
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Fig. 14 The effect size and the average improvement achieved by BBC on each of the fitness functions in
cases that BBC makes a significant difference in terms of efficiency
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exceptions) from the methods under test. We observe the same trends for weak mutation,
denoting more diverse program states. Although the evaluation of the quality of the gen-
erated tests is outside of the scope of this study, we believe that diverse return values and
program states can have a positive impact on the quality of the generated assertions, which is
one of the known current limitations preventing the large industrial adoption of search-based
unit test generation (Almasi et al. 2017).

Adaptive secondary objectives As explained in Section 3.3, applying BBC can be expen-
sive (O(N × E × log V )), compared to classical secondary objectives (linear time).
Therefore, BBC should be activated only when it can effectively contribute to decide
between two test cases with the same fitness value. As shown by our preliminary analysis,
this is especially relevant in the context of unit test generation, where each branch should
be covered, which could trigger a high number of BBC evaluations. In our implementation
of BBC for unit testing (described in Section 3.3.2), we limit the number of activations of
BBC, based on the activation time of an objective (SLEEP TIME) and a user-defined proba-
bility (USAGE RATE). This approach might however not be optimal. For instance, for classes
under test with a high number of implicit branches, activating BBC sooner and more often
might improve the search process. In our future work, we will explore how the secondary
objective can be dynamically adapted during the search, for instance, based on the evolution
of the fitness values of the different objectives in DYNAMOSA.

6.2 BBC for crash reproduction

Generally, using BBC as secondary objective leads to a better crash reproduction ratio and
higher efficiency in search-based crash reproduction. This improvement is achieved thanks
to the additional ability to guide the search process when facing implicit branches during
the search. Combining BBC with STDistance shows an important improvement compared
to the combination of BBC with WeightedSum. This result was expected, since only one (out
of three) component in WeightedSum is allocated to line coverage, and thereby most parts of
the fitness function do not use the approach level and branch distance heuristics. In contrast,
STDistance uses the approach level and branch distance to cover each of the frames in the
given stack trace incrementally.

Our results show that BBC helps the crash reproduction process to reproduce new
crashes. For instance, the crash that we used in this study (XWIKI-13377) can be reproduced
only by STDistance + BBC.

6.3 BBC and testability transformations

In this study, we tried to evaluate TT in DYNAMOSA. However, EVOSUITE failed before
starting the search process for all the different classes under test. After a deeper investiga-
tion, we found out that TT is not compatible with DYNAMOSA, which is the default search
algorithm in EVOSUITE. Moreover, as discussed in Section 2.2, TT faces extra challenges
while it needs extra bytecode instrumentation.

In theory, giving the nature of TT and BBC, these two techniques can be applied simul-
taneously to the search process. Hence, these two approaches can complement each other to
achieve high structural coverage and detect more faults. Studying the impact of using both
TT and BBC on search-based test generation calls for further implementation and efforts,
and thereby, it is part of our future research agenda.
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7 Threats to Validity

Internal validity We cannot guarantee that our implementation of BBC in EVOSUITE and
BOTSING is bug-free. However, we mitigated this threat by testing our implementations and
manually examining some samples of the results. Moreover, following the guidelines of the
related literature (Arcuri and Briand 2014), we executed each configuration 30 times to take
the randomness of the search process into account.

External validity We cannot ensure that our results are generalizable to all cases. However,
for both of our experiments for unit test generation and crash reproduction, we have used
two earlier established benchmarks: JCRASHPACK (Soltani et al. 2020), which is a bench-
mark for crash reproduction containing 124 hard-to-reproduce crashes provoked by real
bugs in a variety of open-source applications, and DEFECTS4J (Just et al. 2014), a collection
of real-world Java projects failures containing 835 bugs.

To increase the external validity while maintaining a good balance between the statistical
power and the overall execution, analysis, and reporting time, we choose to consider only
the ten most recent bugs from the 17 projects available in DEFECTS4J. After filtering out
classes that cannot be handled by EVOSUITE, we ran our evaluation on 219 classes. Among
those 219 classes, 44 come from different versions of the same projects. Although involved
in different bugs, those classes might be similar and influence our results. To mitigate this
threat, we performed a qualitative analysis to confirm the effect of BBC.

Construct validity For unit test generation (RQ 1), we left the parameters of DYNAMOSA
to their default values used by EVOSUITE. Those values are commonly used in the literature
and it has been empirically shown that they give good results (Panichella et al. 2018a, b;
Arcuri and Fraser 2013; Fraser and Arcuri 2014). We can, however, not guarantee that these
default values are the best when used with BBC. Nevertheless, our results show that BBC
can improve search-based unit test generation when using the default parameter values.

For search-based crash reproduction (RQ 2), we used BBC with two different fitness
functions and left other parameters to their default values, used in previous studies (Soltani
et al. 2018; Derakhshanfar et al. 2020). Those studies do not investigate the sensitivity of
search-based crash reproduction to these values, and tuning these parameters should be
undertaken as future work. However, as for unit test generation, our results show that BBC
can improve search-based crash reproduction with the default parameter values.

Conclusion validity We based our conclusion on standard statistical analysis for signif-
icance (Arcuri and Briand 2014) with α = 0.01. Effects of multiple comparisons are
mitigated by adjusting p − values via Nemenyi’s post-hoc procedure (Japkowicz and
Shah 2011; Panichella 2021). Furthermore, we complemented our quantitative analysis with
qualitative investigations to confirm the observed effects.

Verifiability Finally, we openly provide all our implementations: BOTSING 3, as an open-
source crash reproduction tool, and implementation of BBC on EVOSUITE 4. Also, the
data and the processing scripts used to present the results are available as two replication
packages on Zenodo (Derakhshanfar and Devroey 2020; 2021).

3https://github.com/STAMP-project/botsing
4https://github.com/pderakhshanfar/evosuite

https://github.com/STAMP-project/botsing
https://github.com/pderakhshanfar/evosuite
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8 Conclusion and FutureWork

Approach level and branch distance are two well-known heuristics, widely used by search-
based test generation approaches to guide the search process towards covering target
statements and branches. These heuristics measure the distance of a generated test from
covering the target using the coverage of control dependencies. However, these two heuris-
tics do not consider implicit branches. For instance, if a test throws an exception during
the execution of a non-branch statement, approach level and branch distance cannot guide
the search process to tackle this exception. In this paper, we extended our previous
work on Basic Block Coverage (BBC), a secondary objective addressing this issue. We
complemented our previous study into BBC on search-based crash reproduction with an
investigation of BBC for unit test generation.

Our results show that BBC improves the branch coverage for unit test generated using
DYNAMOSA. Although small (∼1%), this improvement in the branch coverage is system-
atic and leads to an increase of the output and implicit runtime exception coverage, and of
the diversity of runtime states. BBC also helps STDistance and WeightedSum to reproduce 6
and 1 new crashes, respectively. Finally, BBC significantly improves the efficiency in 26.6%
and 13.7% of the crashes using STDistance and WeightedSum, respectively.

An important implication of our work for future research is that we need to investigate
secondary search objectives that can be dynamically activated depending on the software
under test. In this work, we applied the activation mechanism for secondary search objec-
tives (BBC) based on user-provided (static) meta-parameters. We have seen indications that
such a mechanism can both improve the search process and at the same time reduce the
computational cost, yet it can be counter-productive in some cases. We envision that BBC
and other secondary objectives would benefit from an adaptive activation, depending on the
runtime behavior (e.g., if the number of implicit runtime exceptions increases) or structure
(e.g., high coupling or deep inheritance hierarchy) of the classes under test.

In our future work, we will investigate the application of BBC for other search-based
test generation techniques (such as testability transformations, and system and integration
testing), as well as the implications of an increase of the diversity of program states in the
generated unit tests (e.g., for assertions generation). We will also investigate how BBC can
be dynamically activated using an adaptive secondary objectives approach to reduce the
computational overload on the search process.
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