
Basic Block Coverage for Unit Test Generation at the SBST 2022
Tool Competition

Pouria Derakhshanfar
Delft University of Technology

Delft, Netherlands
p.derakhshanfar@tudelft.nl

Xavier Devroey
NADI, University of Namur

Namur, Belgium
xavier.devroey@unamur.be

ABSTRACT
Basic Block Coverage (BBC) is a secondary objective for search-
based unit test generation techniques relying on the approach level
and branch distance to drive the search process. Unlike the approach
level and branch distance, which considers only information related
to the coverage of explicit branches coming from conditional and
loop statements, BBC also takes into account implicit branchings
(e.g., a runtime exception thrown in a branchless method) denoted
by the coverage level of relevant basic blocks in a control flow graph
to drive the search process. Our implementation of BBC for unit test
generation relies on the DynaMOSA algorithm and EvoSuite. This
paper summarizes the results achieved by EvoSuite’s DynaMOSA
implementation with BBC as a secondary objective at the SBST
2022 unit testing tool competition.

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering; Software testing and debugging.

KEYWORDS
basic block coverage, search-based unit test generation, EvoSuite

ACM Reference Format:
Pouria Derakhshanfar and Xavier Devroey. 2022. Basic Block Coverage for
Unit Test Generation at the SBST 2022 Tool Competition. In The 15th Search-
Based Software Testing Workshop (SBST’22), May 9, 2022, Pittsburgh, PA, USA.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3526072.3527528

1 INTRODUCTION
Various techniques have been developed over the years to gener-
ate unit tests for Java programs. For the 10th time, the Java Unit
Testing Tool Competition, co-located with the 15th edition of the
International Workshop on Search-Based Software Testing (SBST
2022), has evaluated several unit test generators on an unknown set
of benchmarks to compare the generated tests in terms of structural
coverage and mutation score [4, 6]. In this short paper, we report
the results of our implementation of Basic Block Coverage (BBC), a
secondary objective for search-based test case generation [2, 3], on
top of EvoSuite [5], a state-of-the-art unit test generator for Java,
at the SBST 2022 Tool Competition.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SBST’22, May 9, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9318-8/22/05.
https://doi.org/10.1145/3526072.3527528

2 BASIC BLOCK COVERAGE
BBC was originally proposed for search-based crash reproduc-
tion [1, 2]. Its main purpose is to account for partial coverage caused
by implicit branchings in basic blocks. For instance, many basic
Java operations (e.g., access to an array, method call on an object,
etc.) can throw runtime exceptions (e.g., ArrayIndexOutOfBounds-
Exception, NullPointerException, etc.) that are not declared in
the header of the encapsulating method. When thrown, such ex-
ceptions cause implicit branching in the program that are ignored
by search-based unit test generation techniques relying on the
approach level and branch distance heuristics to drive the search
process. Indeed, both heuristics hypothesize that only a limited
number of basic blocks can change the execution path away from a
target statement. However, if, for instance, a runtime exception is
thrown in the middle of a statement, then the search process does
not benefit from any further guidance from the approach level and
branch distance to reach the targeted statement.

More recently, we extended and evaluated the application of
BBC to search-based unit test generation with DynaMOSA [3, 7].1
Unlike crash reproduction, where only a limited number of paths
need to be explored to reach a target statement and reproduce a
crash, unit test generation seeks to cover several different target
statements, depending on the objectives defined for the search. In
both cases, BBC is used as a secondary objective to compare two
test cases with the same distance to a target statement according
to the approach level and branch distance to find out which one is
the closest. We implemented BBC in EvoSuite [5]

Parameter settings. We rely on EvoSuite with the DynaMOSA
algorithm, and the default set of coverage criteria enabled [8] (i.e.,
line coverage, branch coverage, branch coverage by direct method
invocations, weak mutation testing, output coverage, exception cov-
erage). We set the secondary objectives to maximize BBC and mini-
mize the length to avoid an explosion of the size of the tests during
the search (-Dsecondary_objectives=BBCOVERAGE:TOTAL_LEN-
GTH). BBC comes with two additional parameters: the usage rate,
defining the probability of activating BBCwhen two test cases reach
the same distance for a given target, and the sleep time, defining
the delay after which BBC can be activated when DynaMOSA adds
a target to the active search objectives. We left the usage rate to
its default value of 0.5 (-DBBC_USAGE_PERCENTAGE=50), as recom-
mended from our previous evaluation [3]. We used a sleep time of
10 seconds (-DBBC_SLEEP_TIME=10) when the total search budget
is less than 60 seconds, 30 seconds when the total search budget is
less than 300 seconds, and 60 seconds otherwise. The competition

1Our implementation is openly available at https://github.com/pderakhshanfar/
evosuite/tree/BBC.

https://orcid.org/0000-0003-3549-9019
https://orcid.org/0000-0002-0831-7606
https://doi.org/10.1145/3526072.3527528
https://doi.org/10.1145/3526072.3527528
https://github.com/pderakhshanfar/evosuite/tree/BBC
https://github.com/pderakhshanfar/evosuite/tree/BBC


SBST’22, May 9, 2022, Pittsburgh, PA, USA Pouria Derakhshanfar and Xavier Devroey

mutants

lines

conditions

bbc
evo

su
ite

kex

kex−
refle

ctio
n

randoop

utbot−co
ncre

te

utbot−mocks

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

co
ve

ra
ge budget

30

120

Figure 1: Overall Results of the SBST 2022 Java Unit Testing
Tool Competition.

Table 1: Number of benchmarks for which BBC performed
better (Â12 < 0.5) or worse (Â12 > 0.5) than EvoSuite with a
medium or large magnitude and a significance level of 0.01.

30 sec. 120 sec.
< 0.5 > 0.5 < 0.5 > 0.5

lines coverage 2 10 5 10
medium 1 6 3 7
large 1 4 2 3

conditions coverage 1 6 4 9
medium 1 1 2 4
large 0 5 2 5

mutation score 2 4 3 6
medium 2 3 2 3
large 0 1 1 3

ran with two different search budgets this year: 30 and 120 seconds.
All the other parameters were left to their default value.

3 RESULTS
Figure 1 reports the overall coverages for conditions and lines and
the mutation score of the different tools entering the 2022 compe-
tition. In general, the lines and conditions coverage increases for
BBC when increasing the time budget. However, we see a decrease
in the mutation score. This decrease should be further investigated
by looking at the generated tests. One possible explanation could be
the difference in the number of generated tests: 18,963 tests in total
across the different runs for a 30 seconds time budget against 15,561
tests in total across the different runs for a 120 seconds budget.

As expected, the results of BBC are close to the ones of EvoSuite.
This is in line with our previous evaluation of BBC for unit test
generation [3]. There is, however, a difference in the coverages and

mutation scores of the different benchmarks between EvoSuite and
BBC. This difference is confirmed by our analysis using the non-
parametric Wilcoxon Rank Sum test (with 𝛼 = 0.01) and effect size
Vargha-Delaney Â12 statistic, reported in Table 1. As can be seen
from the Table, BBC and EvoSuite seem to cover the benchmarks
differently, and this difference seems to evolve over time. Further
investigation is needed to identify the factors influencing the ef-
fectiveness of BBC for specific benchmarks (like, for instance, the
presence of implicit branches, sleep time for small search budgets,
etc.).

4 CONCLUSION
This short paper presents the results of Basic Block Coverage for
unit test generation at the 10th Java Unit Testing Tool Competition.
BBC achieved a good score, ranking second out of seven tools taking
part in the competition this year. The results show that BBC covers
the different benchmarks differently, compared to EvoSuite. Further
investigations are needed to identify the best conditions for BBC
to operate, especially with small budgets.

ACKNOWLEDGMENTS
We would like to thank the organizers of the 10th Java Unit Testing
Tool Competition. This research was partially funded by the EU
Horizon 2020 COSMOS (DevOps for Complex Cyber-physical Sys-
tems) Project No. 957254-COSMOS, and the CyberExcellence (No.
2110186) project, funded by the Public Service of Wallonia (SPW
Recherche).

REFERENCES
[1] Pouria Derakhshanfar, Xavier Devroey, Annibale Panichella, Andy Zaidman, and

Arie Van Deursen. 2020. Botsing, a Search-based Crash Reproduction Framework
for Java. In 35th IEEE/ACM International Conference on Automated Software En-
gineering (ASE ’20), September 21–25, 2020, Virtual Event, Australia. ACM/IEEE,
1278–1282. https://doi.org/10.1145/3324884.3415299

[2] Pouria Derakhshanfar, Xavier Devroey, and Andy Zaidman. 2020. It Is Not Only
About Control Dependent Nodes: Basic Block Coverage for Search-Based Crash
Reproduction. In Search-Based Software Engineering - 12th International Symposium,
SSBSE 2020, Aldeida Aleti and Annibale Panichella (Eds.). Springer, 42–57. https:
//doi.org/10.1007/978-3-030-59762-7_4

[3] Pouria Derakhshanfar, Xavier Devroey, and Andy Zaidman. 2022. Basic Block
Coverage for Search-based Unit Testing and Crash Reproduction. https://doi.org/
10.48550/arXiv.2203.02337 arXiv:2203.02337 [cs.SE]

[4] Xavier Devroey, Alessio Gambi, Juan Pablo Galeotti, René Just, Fitsum Kifetew,
Annibale Panichella, and Sebastiano Panichella. 2021. JUGE: An Infrastructure for
Benchmarking Java Unit Test Generators. https://doi.org/10.48550/arXiv.2106.
07520 arXiv:2106.07520 [cs.SE]

[5] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-
eration for Object-Oriented Software. In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software engineering
- SIGSOFT/FSE ’11 (ESEC/FSE ’11). ACM Press, 416. https://doi.org/10.1145/2025113.
2025179

[6] Alessio Gambi, Gunel Jahangirova, Vincenzo Riccio, and Fiorella Zampetti. 2022.
SBST Tool Competition 2022. In 15th IEEE/ACM International Workshop on Search-
Based Software Testing, SBST 2022. IEEE/ACM, Pittsburgh, PA, USA.

[7] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. Auto-
mated Test Case Generation as a Many-Objective Optimisation Problem with
Dynamic Selection of the Targets. IEEE Transactions on Software Engineering 44, 2
(Feb. 2018), 122–158. https://doi.org/10.1109/TSE.2017.2663435

[8] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea Arcuri.
2015. Combining Multiple Coverage Criteria in Search-Based Unit Test Generation.
In Search-Based Software Engineering (SSBSE 2015) (LNCS, Vol. 9275). 93–108. https:
//doi.org/10.1007/978-3-319-22183-0_7

https://doi.org/10.1145/3324884.3415299
https://doi.org/10.1007/978-3-030-59762-7_4
https://doi.org/10.1007/978-3-030-59762-7_4
https://doi.org/10.48550/arXiv.2203.02337
https://doi.org/10.48550/arXiv.2203.02337
https://arxiv.org/abs/2203.02337
https://doi.org/10.48550/arXiv.2106.07520
https://doi.org/10.48550/arXiv.2106.07520
https://arxiv.org/abs/2106.07520
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1109/TSE.2017.2663435
https://doi.org/10.1007/978-3-319-22183-0_7
https://doi.org/10.1007/978-3-319-22183-0_7

	Abstract
	1 Introduction
	2 Basic Block Coverage
	3 Results
	4 Conclusion
	Acknowledgments
	References

