A Vision for Behavioural Model-Driven Validation of
Software Product Lines

Xavier Devroeyl , Maxime Cordy1 , Gilles Perrouin!, Eun-Young Kang1 , Pierre-Yves
Schobbens!, Patrick Heymans'?, Axel Legay>, and Benoit Baudry?

' PReCISE Research Center, Faculty of Computer Science,
University of Namur, Belgium
2 INRIA Lille-Nord Europe, Université Lille 1 — LIFL — CNRS , France
3 INRIA Rennes Bretagne Atlantique, France

Abstract. The Software Product Lines (SPLs) paradigm promises faster devel-
opment cycles and increased quality by systematically reusing software assets.
This paradigm considers a family of systems, each of which can be obtained by a
selection of features in a variability model. Though essential, providing Quality
Assurance (QA) techniques for SPLs has long been perceived as a very difficult
challenge due to the combinatorics induced by variability and for which very few
techniques were available. Recently, important progress has been made by the
model-checking and testing communities to address this QA challenge, in a very
disparate way though. We present our vision for a unified framework combining
model-checking and testing approaches applied to behavioural models of SPLs.
Our vision relies on Featured Transition Systems (FTSs), an extension of tran-
sition systems supporting variability. This vision is also based on model-driven
technologies to support practical SPL modelling and orchestrate various QA sce-
narios. We illustrate one of such scenarios on a vending machine SPL.

Keywords: Software Product Line, Model-Based Testing, Model-Checking

1 Introduction

The manufacturing industry achieved economies of scope based on the idea that a prod-
uct of a certain family (e.g., cars) may be built by systematically reusing assets, with
some of them common to all family members (e.g., wheels, bodywork, etc.) and others
only shared by a subset of the family (e.g., automatic transmission, manual transmis-
sion, leather seats, etc.). The Software Product Line (SPL) paradigm [35] applies this
idea to software products. In SPL engineering, we usually associate assets with so-
called features and we regard a product as a combination of features. Features can be
designed and specified using modelling languages such as UML, while the set of le-
gal combinations of features (that is, the set of valid products) is captured by a feature
model (FM) [24].

As in single-system development, the engineer will have to improve confidence in
the different products of an SPL, using appropriate Quality Assurance (QA) techniques.
Two popular QA approaches are model-checking and testing. Model checking [6] per-
forms systematic analyses on behavioural models in order to assess the satisfaction of

The final authenticated publication is available online at https://doi.org/10.1007/978-3-642-34026-0_16


Xavier Devroey
The final authenticated publication is available online at https://doi.org/10.1007/978-3-642-34026-0_16


the intended temporal and qualitative requirements and properties. As a complement to
model-checking, festing [27] determines whether or not actual executions of the system
behave as expected.

In this SPL context, testing or model checking every possible software product
rapidly becomes unfeasible, due to a possibly huge number of different combinations
of features. This explains why, despite being identified as a research area for years, the
development of practical SPL testing techniques is still in an immature stage [14].

This is not a reason to give up, though. On the one hand, we observe significant
progress in the SPL verification area and the emergence of efficient model-checking
techniques [2,3,7,9, 17,20, 25, 26]. On the other hand, the testing community has also
progressed in this direction by adapting combinatorial interaction testing techniques
to the SPL context [32-34]. Furthermore, Model-Based Testing (MBT) [39] is a very
efficient approach for addressing test concerns for large and complex systems.

These promising results motivate our will to unify MBT and model checking tech-
niques in one framework in order to perform practical, model-based QA of SPLs. It
relies upon UML [30] and Featured Transition Systems (FTSs) [8], a formalism for
modelling the behaviour of SPLs.

This vision paper sketches this future framework, presenting actual achievements
in QA of SPLs and challenges ahead. Section 2 presents a state of the art in variability
modelling, model checking and model-based testing. Section 3 gives an overview of the
framework and its different QA activities. Section 4 describes how SPL behaviour can
be given in UML and how products of interest elicited. Section 5 illustrates QA activ-
ities on a running example. Finally, section 6 wraps up with conclusions and outlines
future research directions.

2 Background

In this section, we recapitulate theoretical background regarding management of vari-
ability and formal verification in SPLs engineering.

2.1 Variability Management

Variability Modelling Pohl et al. define features in [35] as an end-user visible char-
acteristic of a system. Features are used by the different stakeholders of a project as
an abstraction to support reasoning and are generally represented in a FM. The most
common representation for a FM is a Feature Diagram (FD) [24]. For example, Fig. 1
presents the FD of a soda vending machine [8]. A product derived from this diagram
will correspond to a set of selected features, for example {v,b, s, cur, eur} corresponds
to a machine that sells soda (and only soda) in euro. Such a set is called a configuration
of the FM. Feature models have been equipped with formal semantics [36], automated
analyses and tools [24] for more than 20 years.

SPL Behavioural Modelling Formalisms allowing the description of SPL behaviour
can be classified according to the kind of language they rely upon:



VendingMachine

AN

CancelPurchase Beverages FreeDnnks Currency
c cur

AOr
Soda Tea Euro Dollar
/A\Xor s t eur usd

Fig. 1. Example of Feature Diagram: the soda vending machine [8]

— UML-based approaches. Several approaches consider using UML to model SPL
behaviour. For example, Ziadi and Jézéquel [42] illustrate the usage of UML 2
sequence diagrams and statecharts in the context of product derivation. Czarnecki
et al. [12] map features to UML activity diagrams. Our proposal, based on state
machines, will be detailed in Section 4.

— Transition system approaches. Fischbein et al. propose in [17] to use Modal Tran-
sition Systems (MTSs) to model SPLs with some extensions, which were provided
by Fantechi and Gnesi in [15, 16]. Li et al.[26] model each feature as an indepen-
dent state machine. The behaviour of a given product is then the state machine that
results from the combination of its features.

— Algebraic Approaches. Gruler et al. [20, 19] augment process algebra with an op-
erator that allows to model variability in the form of alternative choice between two
processes.

UML-based approaches are easy to adopt, based on the lingua franca of modelling.
Since UML has no formal semantics, one should be provided [42], especially for QA
purposes. MTSs are transition systems with compulsory and optional transitions. Al-
though they are able to model optional behaviour, they do not include an explicit notion
of features. The same issue arises in the approach proposed by Gruler et al. Finally, Li
et al. do not consider cross-cutting features that cannot be modelled as an automaton.

To allow the explicit mapping from feature to SPL behaviour, FTSs [8] were pro-
posed. FTSs are Transition Systems (TSs) where each transition is labelled with a fea-
ture expression (i.e., a boolean expression over features of the SPL), specifying for a
given FD in which products the transition may be fired. Thus it is possible to determine
which products are the cause of a violation or a failed test.

The semantics of an FTS is a function that associates each valid product with its set
of finite and infinite executions, i.e. all the possible paths in the graph available for this
specific product. According to this definition, an FTS is actually a behavioural model of
a whole SPL. Fig. 2 presents the FT'S modelling a vending machine SPL. For instance,



return/c cancel /¢
soda/s @ serveSoda / s

Cchange/—-f open/f
free / f tea/t @/sevreTea/t

A

take/~f

O—O

pay/-f

take / f
close/~f

Fig. 2. FTS example: the soda vending machine [8§]

transition ® P%f @ is labelled with the — f feature expression. This means that only
the products that do not have the feature FreeDrinks f are able to execute the transition.

While FTSs can be efficiently analysed and verified [9, 7], they are not meant to be
designed directly by engineers. In particular, they lack structuring mechanisms. We will
illustrate how UML can be combined with FTSs in Section 5.

2.2 Model Checking and Product Lines

Many variability-intensive systems are safety critical. Embedded systems, for instance,
are often developed as product lines [13]. The highest levels of QA, including formal
verification, are thus needed. Existing verification techniques were mostly developed
for single systems. Using those techniques to verify SPLs is tedious, since the number
of possible products is exponential in the number of features.

Model checking [6, 4] has proven to be a powerful technique for verifying systems
against properties expressed in temporal logics. Classical model checking is currently
restricted to single systems, but we started to investigate how to use it efficiently on
product lines, taking advantage of the fact that large parts of the behaviour are com-
mon to many products. This commonality must already be present in the model. We
presented above FTSs. Model-checking also requires a specification formula, that must
take variability into account. To this purpose, we defined fCTL and fLTL, that are the
well-known logics CTL and LTL (resp.) with additional feature symbols. These sym-
bols (called quantifiers) restrict the set of products verified against a given temporal
property. As an alternative, one could use the products-restraint operator on FTSs [10].
This operator modifies an FTS so that only the behaviour of specific products is rep-
resented in the model. Our model-checking algorithms take the commonality between
the products into account and avoid to re-check common behaviour.

Some of the modelling approaches presented above [17,26,20, 19] offer model-
checking facilities. Yet, because of their feature mapping limitations, they are unable to
keep track of the exact behaviour of each product during QA tasks.



2.3 Model-Based Testing and Product Lines

Testing each product of an SPL also faces the same exponential explosion. We therefore
need to reason on testing activities at the SPL level, in an abstract manner. MBT [39],
like model checking, starts from models of the system under test but provides automated
means to derive tests according to test criteria. MBT is thus an excellent candidate
to solve this issue. Although behavioural MBT is well established for single-system
testing [38], a recent survey [31] shows insufficient support of SPL-based MBT, both in
terms of automation and of integration in the development lifecycle. In this paper, we
will illustrate a possible integration of testing activities within SPL modelling and QA
efforts and focus on the selection of relevant products for testing or/and verification.

3 Overview

Our vision, sketched in Fig. 3, is based on formal model-driven engineering and aims
to provide an end-to-end QA framework for SPL. This framework organizes SPL. mod-
elling and QA activities within two layers: modelling and design & validation. These
activities are orchestrated by three cooperating roles (roles’ interaction is not shown in
the figure): functional architect who defines SPL behaviour and specifies criteria for
selecting products of interest at the requirements level; QA manager responsible of QA
artifacts and the orchestration of QA tasks; and Designer who may refine FTSs with
specific behaviour.

Our framework supports the following sequence of activities. First, the SPL is mod-
elled according to its requirements. The functional architect specifies the FM repre-
senting the variability of the SPL and expresses SPL behaviour in a State Diagram
Variability Analysis (SDVA) model. The SDVA formalism is currently under develop-
ment and will be defined as a UML profile for state machine diagrams. The purpose
of the SDVA model is to facilitate behavioural modelling by using a standard notation
that offers richer constructions than pure FTSs. Amongst other things, we will support
hierarchical constructs (composite states), useful to abstract details during requirements
elicitation and orthogonal states used to model parallel behaviours in sub-states. In ad-
dition to this SDVA model, criteria for selecting products of interest are defined.

Second, the obtained SPL model is validated. The hierarchical behavioural models
(namely, the SDVA) are flattened into FT'Ss. The QA manager then proceeds with the
selection of a specific set of products, test cases, and temporal properties to verify. As
we explain in the sequel, the selection of products can be achieved through the specifi-
cation of conditions over the features, test coverage, or model checking. These criteria
have been previously defined by the functional architect. The designer may refine the
validation model with product-specific properties. For example, one may refine actions
defined on FTS transitions with TSs to obtain a full behavioural model of the SPL (de-
noted by FTS’ in Fig. 3), allowing in-depth analysis of the selected products. Finally,
the product QA manager sets various parameters for the application of validation tools
and retrieves validation outcomes (not shown in the figure). The selected products are
then verified against the chosen temporal properties and refined test cases define the
scenarios to be executed on the SPL’s implementation.



1 Modelling
“ﬂ Coverage Temporal
. N criteria Properties
1
, | QA Model
| T
Requirements " Feature *
I
(I +
Loy _ \\@ Model
\ —> .
b SDVA ﬂy Transformation
: '. model X
| : Functional _— 1. Flattening
i1 Architect SPL Model .
1 ! 1
I
b v
1 1
H |
' , Feature FTS Coverage Temporal
| : e _ model model criteria Logic
I 4 =
| ! 4
! ' /// Flat SPL Model Flat QA Model
I
- : ,,,,,,, : --------- IJ-I rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr ; rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
]
' ; ’/' Design
[ A P A &
| o 1! | o
1
| | Coverage 1 | Temporal 1 Test generation Validation
' 1 criteria 1 Logic |
, —>f - -
' | Unit Test :
K ! _Cases__i Model-checking
, QA ==
! Manager Design QA Model
]
1
v
3. Refinemeﬁt
Designer
Validation FTS'
Model model
/A Test Execution
D o \
\_/ Verlflcatlon
3. Product Validation
7~~"! Optional B IMfandatorv () Activity  -=--- + Inputioutput
| b : i
! __-4+ Information nformation _ = -a Operates Creates

Fig. 3. Framework overview



4 Modelling SPL behaviour with SDVA

An SDVA is an extension of a state machine diagram with variability operators. As in
FTSs, transitions in SDVAs are annotated with constraints over the set of features. A
given software product is able to execute a transition if and only if its features satisfy the
associated constraint. SDVAs thus combine the modelling constructs of state machines
with the conciseness of FT'Ss (when it comes to representing the behaviour of a set
of products). Given that the theory surrounding SDVAs is still undergoing, we present
here but a small and intuitive instance of this formalism. Fig. 4 presents an example
of SDVA for the FM in Fig. 1. The high-level behaviour of the system as described in
the diagram entitled SodaVendingMachine is as follows. The vending machine starts
in state Idle. It can transit to either state Pay or Free if the feature f is disabled or
enabled, respectively. In both cases, the system can move to state Soda (if the feature
s is enabled) or to state Tea (if ¢ is enabled). These two features not being exclusive,
there exist products able to execute both transitions. Finally, the system reaches state
Retrieve and then goes back to Idle.

This small example already gives account of the advantage of SDVAs over a funda-
mental formalism like FTSs. Indeed, one can observe that this SDVA actually models
the same behaviour as the FTS shown in Fig. 2. However, the hierarchical construct in
SDVAs allows one to define this behaviour at different levels of abstractions. Indeed,
we see that the aforementioned high-level behaviour of the system is detailed in five
additional diagrams. The effect of features on the system is thus refined as the model
reaches deeper abstraction levels.

In addition to the SDVA, the functional architect also has to specify coverage cri-
teria. For example, one may be interested in the behaviour of all the vending machines
where a drink is eventually served. Through coverage criteria, one can thus drive the
selection of relevant execution traces. Alternatively, intended requirements for the sys-
tem can be expressed as temporal properties. Once defined, the SPL model and the
criteria will be automatically flattened into an FTS and a suitable QA model. Flattening
thus provides the SDVA model with a formal semantics in a transformational way. The
transformation is an ongoing work and will be based on the flattening algorithm imple-
mented using Kermeta [28] and proposed by Holt et al. in their state machine flattener
Eclipse plug-in [22]. Although it is possible to flatten some of the most advanced UML
state machine diagrams features [40], we currently consider only the hierarchical and
orthogonal constructs.

By using FTSs as formal semantics for SDVAs, we want our framework to benefits
from the accessibility, attractiveness, and usability of UML-based approaches and from
the last advances in behavioural SPL model checking techniques. It is an open method-
ological challenge to determine when to stop detailing the SDVA model and proceed to
FTS generation and refinement. We believe the SPL size and roles’ skills are important
factors impacting this decision. This has to be evaluated in practice.

To define the link between an SDVA and an FM, we propose to use the UML pro-
filing mechanism [30, p. 659-688], which allows one to extend metaclasses to adapt
them to specific needs and thus to map variable behaviour with the FM. Ziadi et al. [42]
use the same profiling mechanism to introduce variability in UML class and sequence
diagrams by “tagging” variants and optional elements and incorporating the constraints



SodaVendingMachine

[s]

[=f]

Retrieve

Pay Wait Canceled Free
altn ancele
O 0" i L@ Waitng | 1220 (]
/Y
pay() [-f] cancel() [c] A tea()

/
return() [c]

\i
Paid | change() [-f]
(2)

cancel() [c]

Canceled
4

Changed
(3)

Fig. 4. Vending machine SDVA model.

expressed in the FM using OCL and algebraic specification. The diagrams are then
used to synthesize state machines for a given product of the product line. Contrary to
this approach where the UML models may be used as standalone, the purpose of SDVA
models is (for now) only to facilitate behavioural modelling by using a standard no-
tation that offers richer constructions than pure FTSs. Amongst other things, we will
support hierarchical constructs (composite states), useful to abstract away from details
during requirements elicitation and orthogonal states used to model parallel behaviours
in sub-states.

From the SPL model, the last step consists in defining the products that will be
covered by the validation activities. Various coverage criteria have been proposed for



state machines such as edge coverage or location coverage [29]. One approach to ex-
press this coverage is to directly annotate relevant elements of the model. Although
pragmatic, this solution has the disadvantage to increase visual clutter and may become
error-prone for large models. Rather, we are in favour of an explicit modelling language
to specify coverage criteria. In particular, we rely on the observer automata concept
proposed by Blom et al. [5]. Intuitively, an observer monitors the system under test and
“accepts” a trace (a possible execution of the state machine) whenever a coverage item
defined by the observer is found. We may thus use an observer to select only the traces
of a specific subset of products. For example, we may only be interested in products
providing drinks for free. Furthermore, we are not interested in cancelling orders for
free drinks. The resulting observer is illustrated in Fig. 5. From the initial location, the
observe can reach the accepting location freeDrinks if the predicate on the transition
evaluates to true, that is if the feature f is selected and c is not.

selected(f A-c)

o @

freeDrinks

Fig. 5. An observer covering “free drinks” products

In principle, given an SDVA model and an observer, it would be possible to derive
all products satisfying the freeDrinks predicate. However, the SDVA model above
has only an intuitive semantics and since it is hierarchical, this model raises an issue
for the application of the coverage criteria. Indeed, as explained by Weillleder [41],
it is not obvious how to traverse outgoing transitions of a composite state. To resolve
these issues, we gave our SDVA model a formal semantics by translating it into an FTS.
Since FTSs are flat, the application of the coverage criteria can be made more explicit.
For example, flattening the SDVA model of Fig. 4 yields the FTS is presented in Fig.
2. The flattening operation usually consists in three steps [1, 18,23]. First, the SDVA
machine is recursively flattened by replacing all states by their sub-machines. We then
have one “expanded state machine” with redundancy (e.g., the Waiting state in the Pay
and Free sub-machines) and empty transitions (e.g., from Retrieve to Idle). The
second step consists in simplifying the expanded state machine by merging redundant
states (e.g., Changed and ForFree) and deleting useless ones (e.g., Idle since it has
only unconstrained incoming transitions). In the last step, the SDVA operations are
transformed into FTS actions. The complete mapping of the SDVA states to the FTS is
given under each state of Fig. 4. Note that Idle state is mapped to 0. It means that this
state is useless and will not appear in the FTS. To merge equivalent states in FTS, one
could apply algorithms like simulation quotient to FTS. Simulation quotient is more
complex in FTS than in usual TSs and has been studied in [11]. In the end, we are
able to verify the correctness of the flattening transformation and the preservation of
properties.



Since the observer’s predicate is expressed in terms of feature expressions and does
not directly involve composite states (such as Idle, Retrieve on top of Fig. 4), it does
not have to be translated. The definition of compact and reusable observers is an open
research question.

An alternative to achieve the selection of products is the explicit specification of
the desired and forbidden features. In this case, the validation will rely on the use of a
formal operator to prune the flattened FT'S from the behaviour of the products that must
be ignored, as we will explain in the following section.

5 Validation of Refined SPLs

In this section, we consider a validation scenario exemplifying the SPL validation using
a design QA model provided by the QA manager and refinements of the validation
model provided by the designer. We illustrate this possible scenario on our vending
machine example.

5.1 Design & Validation

The first step in the design and validation part is the product selection, solely based on
the flat SPL and QA models or on those models with an additional design QA model
provided by the QA manager. The selected products are then refined by the designer
according to the desired detail level and validated in the last step.

Product Selection As mentioned in Section 3, product selection can be performed via
two ways: by using a test coverage algorithm or a model checker:

1. Considering our observer automata (see Fig. 5), an algorithm computing a TS sat-
isfying this observer has been provided [21, 5]. It consists in composing the ob-
server and the TS to systematically explore possible transitions (i.e., transitions
whose associated feature expression is compatible with the formula f A —¢) and
form “traces”, which are in our case the desired products’ TSs. There are various
strategies to generate such traces (e.g., longest [21]). We also need to ensure the
uniqueness of traces. Providing feature-oriented strategies as well as an extension
of the observer language (to deal with predicates defined over features as shown
above) is a research challenge to be tackled.

2. Use the products-restraint operator defined in [10]. Given an FTS and a feature
valuation function (i.e., a partial function that associates features with Boolean val-
ues), this operator removes any transition in the FTS whose feature expression is
incompatible with the feature valuation function. Also note that the behaviour of an
individual product can be extracted from the individual FTS thanks to a total fea-
ture valuation function. Applied on our vending machine example and the function
that associates f to true and c to false, the products-restraint operator produces the
FTS shown Fig. 6. This FTS models exactly the behaviour of the products with free
drinks and no possibility to cancel orders.



soda/s @ serveSoda /s

W tea/t @/se'reTea/t

take / f

close/~f

Fig. 6. Restrained FTS for free and non-canceling products

Refinement Once the products of interest have been selected, we may refine them to
perform targeted verification and generate detailed test scenarios. This refinement con-
sists in providing more behaviour to the FTS’ actions and adding new transitions. Let
us assume that we are interested to validate serveTea behaviour; we detail it by pro-
viding three actions, prepare (setting up tea leaves), boil (boil water at the adequate
temperature) and pour (having the water pass through the leaves and and pour the tea
in the cup when it is infused). The refined FTS is shown Fig. 7.

®

serveSoda /s
\ soda/s @

@ @\; boil /t  pour/t
free / tea/t () <> @/

prepare / t

®O

take / f

Fig.7. Refined FTS detailing “serveTea” behaviour

Product Validation The last step is the validation of the actual products defined in the
validation model.

The QA manager is also responsible for designing and managing test cases of the
SPL. For instance, the QA manager may want to test that serving tea is correctly



handled by the vending machine. To do so, she can provide a new observer as il-
lustrated in Fig. 8. We can reuse the algorithm mentioned above [21, 5] to compute
traces. However, the role of these traces is different: they form abstract test case sce-
narios to be applied on the selected products rather than the new set of products to be
considered. Thus, the algorithm would return a list of actions, like the following one:
{free, tea, serveTea, take}.

serveTea :

serveTea

Fig. 8. An observer covering all traces where the serveTea action appears

During selection, relevant observers may be elicited by pruning those related to
actions not present in the restrained FTS (or the set of product TSs). During refinement,
actions can be detailed. This implies that traces have to be refined as well. However,
refining traces directly may represent a huge task and may not be easily automated as
selection may affect the un-restrained FTS in many ways. Rather, we propose to derive
a refined observer as shown in Fig. 9. This observer is much easier to model by the QA
manager and may be generated by an automated model transformation, provided that
traceability during refinement is maintained. Once obtained, the observer is enabled to
derive traces like {free, tea, prepare, boil, pour, take}l}.

' prepare @ﬂ—). pour ‘

serveTea'

Fig. 9. Refined observer

Generated traces serve as specification for testers to write concrete test cases to be
run on the system implementation.

As in single-system engineering, model checking is an alternative validation tech-
nique. In our other work, we have designed efficient algorithms to verify FTSs against
properties expressed in temporal logic [9, 7] or as automata [11]. Given a property, such
an algorithm returns the exact set of products that do not satisfy the property. To reduce
the overhead of verification, our methods tend to take the commonality between the
products into account and to avoid redundant checking. We are still extending our work
with the aim of providing a wider range of increasingly efficient techniques for formal
verification of SPLs.



6 Conclusion & Perspectives

In this paper, we have presented a vision for a model-based behavioural SPL QA frame-
work. Our approach relies on formal techniques without sacrificing usability in a unified
and flexible enough model-driven framework. We believe that this combination will fos-
ter the usage of efficient QA techniques for SPLs thus improving the confidence in the
SPL paradigm.

By working on domain artefacts with a variability model, we want our framework
to be family-based [37]. The output of the whole chain will be a validation model for
(potentially) one product, a subset of products or even the whole product line according
to the provided select criteria.

Although some achievements have been made in model checking SPL behavioural
models [8], there is still a long way to go before having a complete and coherent SPL
quality assessment framework. First, we need to completely define SDVA with appro-
priate hierarchical constructs and its semantics as a mapping function from SDVA to
FTS. To do this, we will explore existing UML state machines flattening techniques
and see how we can adapt them to our needs.

The second challenge is the definition of observers to generate relevant test cases
(i.e., interesting traces in the FTS). To define what an “interesting trace” is, we will need
to adapt existing test selection criteria and probably create new SPL-dedicated ones.

This leads us to our third challenge: the definition of appropriate test selection al-
gorithms dedicated to SPLs. In addition to well-known criteria like all-transitions, we
would like to define new ones related to the SPL’s features, which may be relevant from
the functional architect’s perspective.

References

1. Ali, S., Hemmati, H., Holt, N., Arisholm, E., Briand, L.: Model Transformations as a Strategy
to Automate Model-Based Testing-A Tool and Industrial Case Studies. Simula Research
Laboratory, Technical Report pp. 1-28 (01 2010)

2. Asirelli, P, ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Design and validation of
variability in product lines. In: Proceedings of the 2nd International Workshop on Product
Line Approaches in Software Engineering. pp. 25-30. PLEASE 11, ACM, New York, NY,
USA (2011)

3. Asirelli, P, ter Beek, M.H., Gnesi, S., Fantechi, A.: Formal description of variability in prod-
uct families. In: Proceedings of the 2011 15th International Software Product Line Confer-
ence. pp. 130-139. SPLC 11, IEEE Computer Society, Washington, DC, USA (2011)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2007)

5. Blom, J., Hessel, A., Jonsson, B., Pettersson, P.: Specifying and generating test cases us-
ing observer automata. In: Proceedings of the 4th international conference on Formal Ap-
proaches to Software Testing. pp. 125-139. FATES’04, Springer-Verlag, Berlin, Heidelberg
(2005)

6. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)

7. Classen, A., Heymans, P., Schobbens, P., Legay, A.: Symbolic model checking of software
product lines. In: Proceedings 33rd International Conference on Software Engineering (ICSE
2011). ACM Press, New York (2011)



10.

11.

12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

. Classen, A.: Modelling and Model Checking Variability-Intensive Systems. Ph.D. thesis,

PReCISE Research Center, Faculty of Computer Science, University of Namur (FUNDP)
(2011)

. Classen, A., Heymans, P., Schobbens, P., Legay, A., Raskin, J.: Model checking lots of sys-

tems: efficient verification of temporal properties in software product lines. In: Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1. pp.
335-344. ICSE ’10, ACM, New York, NY, USA (2010)

Cordy, M., Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Managing evolution in
software product lines: A model-checking perspective. In: Proceedings of VaMoS’12. pp.
183-191. ACM (2012)

Cordy, M., Classen, A., Perrouin, G., Heymans, P., Schobbens, P.Y., Legay, A.: Simulation
relation for software product lines: Foundations for scalable model-checking. In: Proceed-
ings of the 34th International Conference on Software Engineering, ICSE 2012 (to appear).
IEEE (2012)

Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach based on
superimposed variants. In: Gliick, R., Lowry, M. (eds.) Generative Programming and Com-
ponent Engineering, Lecture Notes in Computer Science, vol. 3676, pp. 422-437. Springer
Berlin / Heidelberg (2005)

Ebert, C., Jones, C.: Embedded software: Facts, figures, and future. Computer 42(4), 42-52
(2009)

Engstrom, E., Runeson, P.: Software product line testing-a systematic mapping study. Infor-
mation and Software Technology 53(1), 2—13 (January 2010)

Fantechi, A., Gnesi, S.: A behavioural model for product families. In: Proceedings of the
the 6th joint meeting of the European software engineering conference and the ACM SIG-
SOFT symposium on The foundations of software engineering. pp. 521-524. ESEC-FSE
’07, ACM, New York, NY, USA (2007)

Fantechi, A., Gnesi, S.: Formal modeling for product families engineering. In: Proceedings
of the 2008 12th International Software Product Line Conference. pp. 193-202. IEEE Com-
puter Society, Washington, DC, USA (2008)

Fischbein, D., Uchitel, S., Braberman, V.: A foundation for behavioural conformance in soft-
ware product line architectures. In: Proceedings of the ISSTA 2006 workshop on Role of
software architecture for testing and analysis. pp. 39-48. ROSATEA *06, ACM, New York,
NY, USA (2006)

. Gogolla, M., Parisi Presicce, F.: State diagrams in UML: A formal semantics using graph

transformations. In: Proceedings PSMT. pp. 55-72 (1998)

Gruler, A., Leucker, M., Scheidemann, K.: Calculating and modeling common parts of soft-
ware product lines. In: Proceedings of the 2008 12th International Software Product Line
Conference. pp. 203-212. SPLC 08, IEEE Computer Society, Washington, DC, USA (2008)
Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software product
lines. In: Barthe, G., Boer, E.S. (eds.) Formal Methods for Open Object-Based Distributed
Systems. vol. 5051, pp. 113-131. Springer-Verlag, Berlin, Heidelberg (2008)

Hessel, A., Larsen, K., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.: Testing real-
time systems using UPPAAL. In: Robert Hierons, J.B., Harman, M. (eds.) Formal methods
and testing, pp. 77-117. Springer-Verlag (2008)

Holt, N.E., Arisholm, E., Briand, L.: Technical report 2009-06: An eclipse plug-in for the
flattening of concurrency and hierarchy in uml state machines. Tech. Rep. 2009-06, Simula
Research Laboratory AS (2009)

Kalnins, A., Barzdins, J., Celms, E.: Model transformation language MOLA. In: ABmann,
U., Aksit, M., Rensink, A. (eds.) Model Driven Architecture, Lecture Notes in Computer
Science, vol. 3599, pp. 900-900. Springer-Verlag (2005)



24.

25.

26.

27.
28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Spencer Peterson, A.: Feature-Oriented
domain analysis (FODA) feasibility study. Tech. rep., Software Engineering Institute,
Carnegie Mellon University (1990)

Lauenroth, K., Pohl, K., Toehning, S.: Model checking of domain artifacts in product line en-
gineering. In: Proceedings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering. pp. 269-280. ASE 09, IEEE Computer Society, Washington, DC,
USA (2009)

Li, H.C., Krishnamurthi, S., Fisler, K.: Interfaces for modular feature verification. In: Pro-
ceedings of the 17th IEEE international conference on Automated software engineering. pp.
195-204. ASE ’02, IEEE Computer Society, Washington, DC, USA (2002)

Mathur, A.: Foundations of software testing. Pearson Education (2008)

Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving executability into object-oriented meta-
languages. In: Briand, L., Williams, C. (eds.) Model Driven Engineering Languages and
Systems, Lecture Notes in Computer Science, vol. 3713, pp. 264-278. Springer Berlin /
Heidelberg (2005)

Myers, G.: The art of software testing. Wiley (1979)

OMG: OMG Unified Modeling Language TM ( OMG UML ), Superstructure. Tech. Rep.
August, OMG (2011), http://www.omg.org/spec/UML/

Oster, S., Wobbeke, A., Engels, G., Schiirr, A.: Model-based software product lines testing
survey. In: Zander, J., Schieferdecker, 1., Mosterman, P.J. (eds.) Model-Based Testing for
Embedded Systems, pp. 339-382. Computational Analysis, Synthesis, and Design of Dy-
namic Systems, CRC Press (September 2011)

Oster, S., Zink, M., Lochau, M., Grechanik, M.: Pairwise feature-interaction testing for spls:
potentials and limitations. In: Proceedings of the 15th International Software Product Line
Conference, Volume 2. pp. 6:1-6:8. SPLC 11, ACM, New York, NY, USA (2011)

Oster, S., Zorcic, 1., Markert, F., Lochau, M.: MoSo-PoLiTe: tool support for pairwise and
model-based software product line testing. In: Proceedings of the 5th Workshop on Variabil-
ity Modeling of Software-Intensive Systems. pp. 79-82. VaMoS 11, ACM, New York, NY,
USA (2011)

Perrouin, G., Oster, S., Sen, S., Klein, J., Baudry, B., le Traon, Y.: Pairwise testing for soft-
ware product lines: Comparison of two approaches. Software Quality Journal pp. 1-39 (au-
gust 2011)

Pohl, K., Bockle, G., Van Der Linden, F.: Software product line engineering: foundations,
principles, and techniques. Springer-Verlag New York Inc (2005)

Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Generic semantics of feature
diagrams. Computer Networks 51(2), 456479 (2007)

Thiim, T., Apel, S., Késtner, C., Kuhlemann, M., Schaefer, 1., Saake, G.: Analysis Strate-
gies for Software Product Lines. Tech. Rep. FIN-004-2012, School of Computer Science,
University of Magdeburg, Germany (April 2012)

Tretmans, J.: Model based testing with labelled transition systems. In: Hierons, R.M.,
Bowen, J.P., Harman, M. (eds.) Formal methods and testing, pp. 1-38. Springer-Verlag,
Berlin, Heidelberg (2008)

Utting, M., Legeard, B.: Practical model-based testing: a tools approach. Morgan Kaufmann
(2007)

Wasowski, A.: Flattening statecharts without explosions. SIGPLAN Not. 39(7), 257-266
(June 2004)

WeiBleder, S.: Test models and coverage criteria for automatic model-based test generation
with UML state machines. Ph.D. thesis, Humboldt-Universitit zu Berlin (2010)

Ziadi, T., Jézéquel, J.M.: Product Line Engineering with the UML: Deriving Products. In:
Pohl, K. (ed.) Software Product Lines, pp. 557-586. Springer Verlag (2006)



