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ABSTRACT
In Model Based Testing (MBT), test cases are generated
automatically from a partial representation of expected be-
haviour of the System Under Test (SUT) (i.e., the model).
For most industrial systems, it is impossible to generate all
the possible test cases from the model. The test engineer re-
course to generation algorithms that maximize a given cover-
age criterion, a metric indicating the percentage of possible
behaviours of the SUT covered by the test cases. Our pre-
vious work redefined classical Transition Systems (TSs) cri-
teria for SPLs, using Featured Transition Systems (FTSs),
a mathematical structure to compactly represent the be-
haviour of a SPL, as model for test case generation. In
this paper, we provide one all-states coverage driven gen-
eration algorithm and discuss its scalability and efficiency
with respect to random generation. All-states and random
generation are compared on fault-seeded FTSs.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.13 [Software Engineering]: Reusable Software

General Terms
Reliability, Verification

Keywords
Test Case Generation, Software Product Line, Model-Based
Testing

1. INTRODUCTION
Software Product Line (SPL) engineering [29] is a branch

of software engineering concerned about how to manage vari-
ability for a set of software (i.e., products) sharing common
assets. Somme assets commons to all the products, some
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Figure 1: The soda vending machine example [7]

specific to a subset of products. Those assets are regrouped
in features. Features are commonly organized in a Feature
Diagram (FD) [19] which represents all the possible prod-
ucts of the SPL by expressing relationships and constraints
between features. For instance, Fig. 1a presents the FD
of a soda vending machine. As for any software engineer-
ing paradigm, providing efficient Quality Assurance (QA)
(e.g. model-checking and testing) techniques is essential to
SPL engineering success. Devising an approach to SPLs
QA requires to deal with the combinatorial explosion prob-
lem as the number of products to consider for validation is
growing exponentially with the number of features. In the
worst case, no more than 270 features are needed to derive
as many products as there are atoms in the universe. SPL
testing has been identified as a research area for more than
a decade [24] but only gained momentum recently [13]. De-
spite advances made in handling individual products testing
and tests reuse, there is still a lack of strategies to select test
cases at the SPL level [22].

In a Model-Based Testing approach for single system, the



test engineer designs a models of the System Under Test
(SUT) (or a subset of the SUT) with the expected behaviour
of the system he wants to test [33]. Given some coverage
criterion, an adequacy measure, the test engineer may use
a test case generation tool in order to generate a set of test
cases (i.e., a test suite) which will satisfy the coverage cri-
terion. For instance, the all-state coverage criterion for a
state machine model requires a test suite which, when all
test cases have been executed, will pass trough every state
of the model. MBT has been adapted to SPL in order to pro-
vide efficient techniques to select relevant products to test
[16, 27]. In this paper, we are focused on the behavioural
aspect of SPLs.

In our previous work [12], we introduce coverage crite-
ria for Featured Transition Systems (FTSs), a mathematical
and compact representation of the behaviour of a SPL. FTSs
have originally been proposed to efficiently perform model
checking on SPLs [7]. We suggest to build a general frame-
work to perform behavioural model-based testing of SPLs
using FTSs as a common representation of the behaviour of
the SPL [10]. We are confident that the advances made by
the model checking community may be beneficial to perform
testing activities (e.g., test case selection) at the SPL level.

In this paper, we present an algorithm to build a test
suite satisfying the all-states coverage criterion at the SPL
level. We discuss its scalability and efficiency with respect
to random generation. All-states and random generation are
compared on fault-seeded FTSs.

The remainder of this paper is organised as follows: Sec-
tion 2 introduces our FTS approach for modelling software
product lines, as well as coverage criterion exercised in this
paper. Section 3 details our coverage generation algorithms
and Section 4 compares them with respect to randomly in-
jected faults. Section 5 discusses related work while Section
6 wraps up with conclusions.

2. BACKGROUND
Classen et al. [7] propose Featured Transition Systems

(FTSs) to compactly represent the behaviour of a SPL. Ba-
sically a FTS corresponds to a Transition System (TS) with
transitions tagged with feature expressions defining which
product(s) of the SPL may fire a transition. Fig. 1b presents
a FTS for the soda vending machine SPL described in Fig.
1a. For instance: f in Fig. 1b indicates that only products
that have the free feature may fire the free and take blue
transitions. Formally, an FTS is a tuple (S,Act, trans, i, d, γ),
where

• S is a set of states;

• Act a set of actions;

• trans ⊆ S × Act × S is the transition relation (with

(s1, α, s2) ∈ trans sometimes noted s1
α−→ s2);

• i ∈ S is the initial state;

• d is a FD; and γ : trans → [[d]] → {>,⊥} is a total
function labelling each transition with a boolean ex-
pression over the features, which specifies the products
that can execute the transition ([[d]] corresponds to the
semantic of the FD d, i.e., all the different products
that may be derived from d). To improve readability,
this expression (called feature expression) for a partic-
ular transition is represented using classical boolean

operators over features. E.g., the feature expression

for the transition t = 1
pay−→ 2 in Fig. 1b (noted γt) is

¬f , denoting all the products of the SPL that do not
have the free feature.

A model checker for FTSs has been implemented in ProVe-
Line [9], a product line of model checkers for the verification
of behavioural models of SPLs.

2.1 Abstract Test Case
To select relevant test cases, we ha to define the notion of

abstract test case in a FTS [12]. In opposition to “abstract
test case”, the notion of “concrete test case” refers to code to
execute or actions to test the final product, it corresponds to
an instantiated test case for a particular product. Abstract
test cases are defined at the SPL level. An abstract test case
is a trace atc = (α1, . . . , αn) (i.e., finite sequence of actions)
in the FTS. It is valid iff:

fts
(α1,...,αn)

=⇒

Where fts
(α1,...,αn)

=⇒ is equivalent to i
(α1,...,αn)

=⇒ , meaning
that there exists a state sk ∈ S with sequence of transitions
labelled (α1, . . . , αn) from i to sk. This definition is simi-
lar to classical test case definitions for TS test models [23].
However, for a FTS, it is possible to extract sequences of
actions that cannot be executed by any product of the SPL
(e.g., in Fig. 1b the related transitions contains mutually
exclusive features: pay, change, tea, serveTea, take). A test
case is executable if there exists at least one product in the
product line able to execute it.

2.2 Coverage Criteria
In our previous work [12], we redefine classical TS cover-

age criteria for FTSs. A coverage criterion is an adequacy
measure to qualify if the test objective defined by the test
engineer is reached when executing a test suite on a SUT.
In classical behavioural MBT approaches most commonly
used selection criteria are structural criteria: state, transi-
tion, transition-pair and path coverage [23, 33]. The state
(respectively transition) coverage criterion specify that when
executing a test suite on the SUT, all the states (respectively
transitions) of the test model are visited (respectively fired)
at least once. The transition-pair coverage specifies that for
each state, all the incoming-outgoing transitions pairs are
fired at least once. The path coverage criterion specifies
that each path in the test model has to be executed at least
once. In order to adapt the test selection problem to FTSs,
we define a coverage criterion as a function that associates
an FTS and an abstract test suite over this FTS to a real
value between 0 and 1 giving the adequacy of the test suite.

In the remainder of this paper, we present an algorithm
generating executable abstract test suites satisfying the all-
states coverage criterion and compare this suite to randomly
generated abstract test suite using fault seeding [23]. The
all-states coverage criterion relates to the ratio between the
states visited by the test cases pertaining to the abstract
test suite and all the states of the FTS. When the value of
the function equals to 1, the abstract test suite satisfies all-
states coverage. On the soda vending machine in Fig. 1b,
an all-states covering abstract test suite might be:

{(pay, change, soda, serveSoda, open, take, close)
(free, tea, serveTea, take); (free, cancel, return)}



Data: FTS (in) ; A (out)
Result: Accessibility matrix A
∀si, sj ∈ S : A[i, j]←

∨
t=(si,α,sj)∈trans γt ;

for k ← 1 to #S do
for i← 1 to #S do

for j ← 1 to #S do
A[i, j]← A[i, j] ∨ (A[i, k] ∧A[k, j]);

end

end

end
return A;
Algorithm 1: Modified Warshall algorithm [30]

3. FTS TEST-CASES GENERATION
The following sections presents our all-states covering and

random generation algorithms.

3.1 All-States Generation Algorithm
To compute a test suite satisfying the all-states coverage

criterion, we define a branch and bound algorithm with a
heuristic based on the accessibility matrix for the FTS. The
idea is, at each iteration of the algorithm, to branch out
the current partial abstract test case into multiple partial
abstract test cases by adding to each one the possible next
transitions to visit. And bound up to the partial abstract
test case with the highest score, i.e., where the last state
may lead to the highest number of states that has not yet
been visited by a previously computed abstract test case.
We present hereafter three algorithms involved in the com-
putation of a all-states covering test suite: the computation
of the accessibility matrix for a FTS using a variant of the
Warshall algorithm [30], the heuristic which computes for
a given state its score and the branch and bound algorithm
which computes the test suite satisfying the all-states cov-
erage criterion.

Accessibility matrix computation. An accessibility
matrix A gives for two states (s1, s2) the products able to
execute a paths from s1 to s2. This matrix corresponds to
the transitive closure of the FTS and is computed using the
Warshall algorithm [30]. Contrary to an accessibility matrix
computed for a classical TS, the entry for s1 and s2 (noted
A[1, 2]) will not be true or false (i.e., there exists a path
from s1 to s2 or not), but rather the products for which
there exists a path from s1 to s2. In our implementation of
the algorithm (as for in ProVeLines [9]), the products able
to execute a transition t (noted γ t) are represented using
feature expressions (i.e., boolean expressions over features).
An entry of the accessibility matrix A will be a feature ex-
pression. E.g., for the soda vending machine in figure 1b, the
entry A[1, 4] = (¬f ∨f)∧c, states that there exists a path in
the FTS from s1 to s4 for all the products of the SPL having
the cancel feature and having or not free drinks. Algo. 1
presents the adaptation of the Warshall algorithm for FTSs.
The output of the algorithm is the accessibility matrix A for
the given FTS. First A is initialised with the feature expres-
sions conditioning the transition from one state to another.
In the next steps, the matrix is updated by computing all
the possible paths for each pair of states.

Score computation. Once we have the accessibility
matrix, we use a branch and bound algorithm which will
explore the FTS according to our heuristic. We choose a

Data: k (in) ; A (in) ; e (in) ; score (out)
Result: The score for the state on line k in A
score← 0;
for j ← 1 to #S do

if sj ∈ toV isit and SAT (A[k, j] ∧ d ∧ e) then
score← score+ 1;

end

end
return score;

Algorithm 2: Score computation

Data: FTS (in) ; A (in) ; testsuite (out)
Result: Test suite satisfying the all-states coverage

criterion
toV isit← S;
candidates←

⋃
t=(i,α,sk)∈trans

((α), γt, score(k, γt));

testsuite← ∅;
while toV isit 6= ∅ do

c← (atc, e, score) ∈ candidates such as score is
maximal in candidates;
candidates← candidates \ {c};
if last(c.atc) = i then

if c.ts contains states from toV isit then
testsuite← testset ∪ {c.atc};
toV isit← toV isit \ {visited(c.atc)};

end

else
forall t = (last(c.atc), α, sk) ∈ trans do

if SAT (d ∧ c.e ∧ γt) then
candidates← candidates ∪ {(c.atc+
+(α), (e ∧ γt), score(k, (e ∧ γt)))};

end

end

end

end
return testset;

Algorithm 3: All-states test suite generation algorithm

simple heuristic: it computes a score equal for a given state
to the number of states not yet covered by actual test suite
and accessible from this state. Algo. 2 presents the score
computation for a given accessibility matrix A and a state
sk. This score is computed dynamically during the genera-
tion of an abstract test case by iterating over the k-th line
of the accessibility matrix A. The score is incremented by
1 for every cell corresponding to a not yet reached state.
Before the increment, we verify that the feature expression
is compatible with the FD d and the actual partial abstract
test case feature expression e (i.e., there exist one product
able to execute the partial abstract test case).

All-states covering abstract test suite computa-
tion. The branch and bound algorithm is described in
Algo. 3. This algorithm produces an abstract test suite
that satisfy the all-states coverage criterion. First the states
to visit (toV isit) is initialised to S, all the states of the FTS.
The candidates abstract test cases to consider (candidates)
are the test cases with one transition going out from the ini-
tial state i. Each candidate is a triplet with an abstract test
case (atc), the abstract test case feature expression (e) and a
score corresponding to the number of states reachable by the
last state of the partial abstract test case (score). At this



Data: FTS (in) ; tescase (out)
Result: A random executable abstract test case in

FTS
atc← random(α) such as t = (i, α, sk) ∈ trans;
e← γt;
while last(atc) 6= i do

atc← atc+ +random(α) such as
t = (last(atc), α, sk) ∈ trans;
e← e ∧ γt;
if last(atc) = i ∧ ¬SAT (d ∧ e) then

atc← ();;
atc← random(α) such as
t = (i, α, sk) ∈ trans;
e← γt;

end

end
return atc;

Algorithm 4: Random test case generation algorithm

stage, the test suite (testsuite) is empty. The main loop
of the algorithm will compute the abstract test cases and
continue as long as there remains states to visit in the FTS.
We made the assumption here that the graph formed by the
states and the transitions of the FTS is connected. In this
loop, the best candidate c (with the highest score) is picked
and removed from the list of candidates to consider. If the
last state of this candidate (last(c.atc)) is the initial sate i,
the abstract test case is considered as complete and added
to the test suite (if it contains states not yet visited). The
states reached by the abstract test case (visited(c.atc)) are
removed from the states to visit and the algorithm will pick
the next candidate at the next iteration. If the last state of
the abstract test case is not the initial state, the exploration
continues and new candidates are computed. The outgoing
transitions of the final states are added to the partial ab-
stract test case (if there exists a product able to execute the
partial abstract test case) and for each one, a new score is
computed.

Simplification for large models. In order to scale to
our largest model, a simplification has been implemented in
the algorithm: we ignore the feature expressions and check
the validity of the abstract test case only before adding it to
the test suite. Before adding the abstract test case to the test
suite and removing the visited states from the toV isit set,
we perform a satisfiability call (SAT ) on the conjunction
of the FD (d) and the feature expression of the abstract
test case (atc.e). This simplification reduces the number of
SAT calls which are very costly. This allows to reduce the
time from more than two days (after which we killed the
algorithm without any results) to around 48 seconds.

3.2 Random Generation Algorithm
The random generation algorithm generates random ex-

ecutable abstract test cases (atc). Meaning that test cases
may be executed by at least one valid product of the prod-
uct line. Algo. 4 produces for a given FTS an executable
abstract test case. It differs from a pure random algorithm
by only returning test cases that may be executed by at least
one product of the SPL. This verification is done once the
last state of the test case last(atc) is equal to the initial state
i. If the conjunction of the FD d and the feature expression
of the test case is not satisfiable (¬SAT (d∧e)), the test case

Table 1: Models characteristics
Model States Transitions Actions Features
Soda V. M. 9 13 12 9
Minepump 25 41 23 9
Claroline 106 2055 106 44

is cleared and the algorithm loops again. To build a random
test suite, one will call the Algo. 4 multiple times.

4. CASE STUDIES
To assess the all-states generation algorithm described in

section 3.1, we use fault seeding and compare the number
faults detected by the generated test suite to the number of
faults detected by randomly generated test suites. Our eval-
uation has been performed on three case studies. For each
of them, we generated random test suites and a test suite
satisfying the all-states coverage criterion. The first case is
the soda vending machine presented in Fig. 1. The second
case is the minepump system [5]. It models the behaviour of
a SPL of pumps to be used in a mine that has to be kept safe
from flooding and avoid explosions. The third system is the
Claroline system [11]. Claroline is an on line course man-
agement system dedicated to information sharing between
students, professors and teaching assistants. The FTS of
the Claroline system has been reverse engineered using sta-
tistical web application testing technique [31] from a 5.26
Go Apache web log (which represents 12.689.030 HTTP re-
quests) of the local instance of Claroline used at the Uni-
versity of Namur1. Each state corresponds to a web page
(without parameters) and each transition corresponds to a
link from one page to another. Since we are in a web en-
vironment, every page is directly accessible from the initial
state and the initial state is directly accessible from every
state. It represents the fact that we may directly access a
page (using its URL) and leave the website at any moment.

Characteristics of the three considered models are pre-
sented in table 1. The algorithms presented in sections 3.1
and 3.2 have been implemented in Java and run on a Win-
dows 7 machine with an Intel Core i3 (3.10GHz) processor
and 4GB of memory. We generate random test suites with
the same number of test cases as the ones generated by all-
states algorithm to enable direct comparison of coverage.
We also randomly generate larger test suites to figure out
coverage gains. For the soda vending machine, the aver-
age generation time of a test set of 20 random test cases
was 0, 485 sec. and 0, 383 sec. for the generation of a test
suite with 5 test cases satisfying the all-states coverage cri-
terion using the algorithm presented in section 3.1. For the
minepump model, the average generation time of 20 ran-
dom test cases was 0, 374 sec. and 0, 432 sec. for 12 test
cases satisfying the all-states criterion. As expected, the av-
erage generation time for Claroline was longer: 47, 972 sec.
for a test set with 105 test cases satisfying the all-states
criterion. Claroline’s random test case generation took on
average 1, 361 sec. for 200 test cases.

4.1 Results and Discussion
Fault seeding is a classical technique to assess and compare

test suites coverage [1, 2]. The idea is to inject faults in

1http://webcampus.unamur.be
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Figure 2: Fault coverage of the soda vending machine, minepump and Claroline systems

Table 2: Average number of faults
Model States Transitions Actions
Soda V. M. 6,05 7,91 7,02
Minepump 16,39 24,41 11,8
Claroline 67,05 1151,06 39,5

SUT and measure the number of faults detected by the test
suite. In a SPL context, fault injection has been applied to

feature diagrams by Henard et al. [15]. We did not consider
fault injection in the FD, in place we choose to artificially
inject faults into the FTS by tagging state, transitions and
actions as faulty. The fault seeding has been applied 100
times for each FTS model and each test set has been run
on those 100 faulty FTSs. The average number of faults for
state, transitions and actions for the different models are
presented in table 2. The fault coverages presented in figure
2 is the ratio between the number of detected faults and
the total number of injected faults. A fault is considered



Table 3: Faults Coverage
Model Min. Median Mean Max.
Faulty states coverage
Soda V. M. (a-s) 1.0000 1.0000 1.0000 1.0000
Soda V. M. (r-5) 0.5556 0.8889 0.8167 1.0000
Soda V. M. (r-20) 0.6667 1.0000 0.8533 1.0000
Minepump (a-s) 1.0000 1.0000 1.0000 1.0000
Minepump (r-12) 0.5200 0.7200 0.8533 1.0000
Minepump (r-20) 0.6400 0.8400 0.8440 1.0000
Claroline (a-s) 1.0000 1.0000 1.0000 1.0000
Claroline (r-105) 0.8679 0.9245 0.9224 0.9717
Claroline (r-200) 0.9340 0.9811 0.9792 1.0000
Faulty transitions coverage
Soda V. M. (a-s) 1.0000 1.0000 1.0000 1.0000
Soda V. M. (r-5) 0.4615 0.6923 0.6938 0.8462
Soda V. M. (r-20) 0.6154 0.8462 0.7446 0.8462
Minepump (a-s) 1.0000 1.0000 1.0000 1.0000
Minepump (r-12) 0.5200 0.7200 0.8533 1 .0000
Minepump (r-20) 0.5122 0.7317 0.7334 0.9512
Claroline (a-s) 0.1017 0.1017 0.1017 0.1017
Claroline (r-105) 0.2918 0.3509 0.3502 0.3886
Claroline (r-200) 0.4455 0.4839 0.4845 0.5205
Faulty actions coverage
Soda V. M. (a-s) 1.0000 1.0000 1.0000 1.0000
Soda V. M. (r-5) 0.5000 0.7500 0.7517 0.9167
Soda V. M. (r-20) 0.6667 0.9167 0.8067 0.9167
Minepump (a-s) 0.8695 0.8695 0.8695 0.8695
Minepump (r-12) 0.5217 0.6957 0.7096 0.9130
Minepump (r-20) 0.5652 0.7826 0.7883 1.0000
Claroline (a-s) 1.0000 1.0000 1.0000 1.0000
Claroline (r-105) 0.8679 0.9245 0.9224 0.9717
Claroline (r-200) 0.9340 0.9811 0.9792 1.0000

as detected as soon as there is one test case that covers the
faulty transition, action or state.

By construction, abstract test suites generated using our
all-states algorithm (a-s in Fig. 2 and Tab. 3) find all the
faulty states for the three FTSs. On average, the random
algorithm does not perform as well to cover all the states
of the different models. On the contrary, the random algo-
rithm performs better at detecting faulty transition on the
largest model (Claroline): an average of 0.4845 for the 200
randomly generated test suites (r-200 in Fig. 2 and Tab. 3)
against 0.1017 for the all-states generation algorithm. We
investigated this difference and found that the all-states gen-
erated test suite contains only short test cases (2 actions).
This is due to our heuristic. Since it prefers states that have
a path to uncovered states, the initial state has the highest
score in the Claroline model (because all the states in the
models have transitions coming from and going to the initial
state, due to the web nature of the application). Changing
the heuristic to avoid direct return to the initial state may
improve the results for this kind of models (where each state
is strongly connected to the initial state) but may increase
the complexity of the algorithm and generate inadequate ab-
stract test cases for other kinds of models. These results are
in line with the fact that all-states coverage criterion is poor
to cover transitions. Of courses an all-transitions algorithm
would have given much better results (and all-states cover-
age). However our preliminary evaluation of such an algo-
rithm resulted in huge scalability problems for the Claroline

case study; after more than 3 days of generation and a text
file describing the test suite of more 250 GB, our systems
ran out of memory (and also of hard drive space!). Exhaus-
tive computation of all-transitions for moderate size FTS is
therefore not an option. Finally, we observe that the test
suite generate to cover all-states in the Claroline FTS also
covers all the actions. This is due to the nature of the model,
since each state represents a page and each action represents
a link followed from a page (i.e., a state in the FTS) to an-
other page (i.e., another state), there is as many actions as
there is states. Each faulty action is thus detected. This is
not always the case, e.g., the soda vending machine in Fig.
1b.

4.2 Threats to validity
Models size and construct validity. Two of the mod-

els we used in the case study are home-made small models
and may not reflect a real case. To mitigate this risk, we
also used the Claroline model [11]. This model has been
generated from the Apache log of an existing website used
by the students and professors at the university of Namur
and reflects a real system.

All-states generation algorithm. The all-states gen-
eration algorithm has been simplified to reduce the number
of SAT calls which are very costly. This simplification gives
good results on our largest model (Claroline) due to the
few constraints on the FTS. On other models with more
constraints on the different transitions, this simplification
may give poor results. We intend to compare the actual
implementation which uses a SAT solver with binary deci-
sion diagrams (BDDs) which have performed better when
processing FTSs [6].

Random generation algorithm. To avoid too many
SAT calls, we verify that an abstract test case is executable
a posteriori by calling the SAT solver once with the con-
junction of the FD (represented as a boolean formula) and
the feature expression of the transitions of the test case. We
repeat the building of an abstract test case while it is not
executable. As shown in section 4, the execution time on a
large model is good. Since the largest FTS model we consid-
ered does not have a lot of behaviours exclusive to subsets
of the product line, this implementation of the random algo-
rithm works fast. This may be not the case for other models
with a lot of constrained behaviour.

Duplicate random abstract test cases. The random
generation of a test suite does not check whether there are
duplicates abstract test cases or not. Since the size of the
test suites considered in section 4 is larger than the size of
the all-states covering test suite, this thread is limited. To
avoid this, one may implement a filter to check that newly
generated test suites are not duplicated.

Few constraints for Claroline FTS. The Claroline
FTS and its FD contain few constraints ending in a SPL
with lots of products. We believe this is a typical charac-
teristic of web applications which are a particular class of
system. As explained in section 3.2, this has influenced the
implementation of the random algorithm in order to min-
imize the number of SAT calls (which are costly in CPU
time). It has also influenced the heuristic during the gener-
ation of the test suite covering all-states (see section 4) and
gives very short test cases in regard to the size of the system.
We plan to apply our algorithms on large industrial systems
with more constrained FD and FTSs in order to validate our



conclusions.
Coverage vs effectiveness. As discussed by Inozemt-

seva et al. [17], a test suite with a good coverage does not
guarantee the effectiveness of this test suite. However, in a
first attempt to compare our generation algorithms, injected
faults coverage seems to be a reasonable approach. We plan
to develop our fault injection strategies in order to adapt
classical mutation testing [23] to SPLs.

5. RELATED WORK
Coverage testing for SPL targets both variability and on

behavioural models. Many approaches targeting variability
models (mostly feature models) exploit ideas of Combinato-
rial interaction testing to sample configurations [28, 8, 18],
yielding configuration sets even for very large feature mod-
els. The central coverage criterion here is named“t-wise”: all
t-combinations of features must appear at least once in the
generated configurations. It based on the empirical obser-
vation that most bugs are related to undesired interactions
between features. Such configurations can be further pri-
oritized according to assigned feature weights [16, 18], or
similarity [14]. This actually helps testers to scope more
finely and flexibly relevant products to test than a covering
criteria alone. However the benefits of such techniques in
terms of behavioural coverage have to be assessed.

At the behavioural level, several techniques have also been
proposed. One of those considers incremental testing in the
SPL context [34, 26, 21]. For example, Lochau et al. [21]
proposed a model-based approach that shifts from one prod-
uct to another by applying“deltas” to statemachine mod-
els. These deltas enable automatic reuse/adaptation of test
model and derivation of retest obligations. Oster et al. [26]
extend combinatorial interaction testing with the possibility
to specify a predefined set of products in the configuration
suite to be tested. There are also approaches focused on the
SPL code by building variability-aware interpreters for vari-
ous languages [20]. Based on symbolic execution techniques
such interpreters are able to run a very large set of products
with respect to one given test case [25]. Cichos et al. [4] use
the notion of 150% test model (i.e., a test model of the be-
haviour of a product line) and test goal to derive test cases
for a product line but do not redefine coverage criteria at the
SPL level. Finally, Beohar et al. [3] propose to adapt the
ioco framework proposed by Tretmans [32] to FTSs. Con-
trary to this approach, we do not seek exhaustive testing of
an implementation but rather to select relevant abstract test
cases based on the criteria provided by the test engineer.

6. CONCLUSION
In this paper we present a all-states coverage driven exe-

cutable abstract test suite generation algorithm and evalu-
ate it against randomly generated executable abstract test
suites using fault seeding. This generates an executable ab-
stract test suites satisfying the all-states coverage criteria,
meaning that when executing all the tests of this test suite,
all the states of the FTS are visited at least once. We com-
pare the results of the generated abstract test suites on three
case models, two small models of hardware systems and one
larger model of a web application (Claroline), using fault
seeding. The all-states generation algorithm produces test
cases able to detect all faulty states (as expected) but also
able to detect a large amount of faulty actions. However,

due to the particular web nature of the application in the
Claroline case study, the test cases do not cover faulty tran-
sitions very well. The random generation algorithm per-
formed much better in this case producing longer test cases
thus covering more faulty transitions. Random generation
is also faster (35 times speed-up on average). Future works
involve improvements on our all-states generation algorithm
and the of a scalable transitions coverage approach. As all-
transitions coverage is tricky to compute for moderate size
systems, we may employ heuristics to “mimic” this coverage
without explicitly computing it, adopting a similar strategy
to the on we proposed for t-wise testing over feature mod-
els [14]. Our long term goal is to provide product line of
practical algorithms for FTS coverage test case generation.
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[25] H. V. Nguyen, C. Kästner, and T. N. Nguyen.
Exploring variability-aware execution for testing
plugin-based web applications. In 36th International
Conference on Software Engineering, ICSE ’14. IEEE,
2014.

[26] S. Oster, F. Markert, and P. Ritter. Automated
incremental pairwise testing of software product lines.
In Software Product Lines: Going Beyond, pages
196–210. Springer, 2010.

[27] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, and
Y. le Traon. Pairwise testing for software product
lines: Comparison of two approaches. Software Quality
Journal, 2011.

[28] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, and
Y. L. Traon. Pairwise testing for software product
lines: comparison of two approaches. Software Quality
Journal, 20(3-4):605–643, 2012.
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