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ABSTRACT
Structural approaches to Software Product Lines (SPL) test-
ing (such as pairwise testing) have gained momentum as they
are able to scale to larger SPLs described as feature diagrams
(FD). However, these methods are agnostic with respect to
behaviour: the sampled configurations have thus no reason
to satisfy any given behavioural criterion. In this paper, we
investigate the behavioural coverage of two structural test-
ing criteria: pairwise and similarity. To do so, we modelled
four SPLs in terms of feature diagrams and associated fea-
tured transitions systems (FTSs). We then computed state,
action and transition coverage for a set of generated configu-
rations. Preliminary results indicate that for relatively small
variability models with few cross-tree constraints, structural
coverage-driven tools tend to cover large parts of behaviour
with less than 8 configurations. Though structural coverage
cannot be used directly as a replacement for behavioural
driven SPL test generation, opportunities to mix structural
and behavioural coverage for efficient and effective SPL test-
ing do exist.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.13 [Software Engineering]: Reusable Software

General Terms
Reliability, Verification, Algorithms, Measurement

Keywords
SPL Testing, Structural Coverage, Featured Transition Sys-
tem
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1. INTRODUCTION
Software Product Line (SPL) testing is an intrinsically

difficult activity [30]. One of the main challenges is the
combinatorial explosion of the number of products to be
tested. To bypass this explosion, sampling techniques have
been defined to select configurations of interest from a Fea-
ture Diagram (FD). These techniques involve the definition
of structural coverage criteria on the FD, such as t-wise cov-
erage [6, 11, 20, 33] where the set of sampled products must
contain all combinations of t features, or more recently sim-
ilarity testing [15], where the goal is to select products that
are as different as possible. These methods became attrac-
tive because they usually produce small numbers of config-
urations to test, scale up to thousands of features [15, 20],
have demonstrated their bug-finding abilities on real cases
such as Eclipse [21] or automotive systems [36] and are being
integrated in popular feature modelling environments, such
as FeatureIDE or Pure::Variants. Additionally, they can be
combined with other criteria (such as the cost of testing or
the maximum number of products to consider) acknowledg-
ing the multi-objective nature of a testing budget [17,22].
Such approaches do not take SPL behaviour into account. In
contrast, variability-aware testing [23] embraces the whole
SPL code to perform test case generation. At the model
level, there is a growing body of work on behavioural SPL
coverage [2, 7–10]. Yet these criteria may be expensive to
compute on large SPLs. Thus, we formulate a simple re-
search question:

Practically, which behavioural coverage sim-
ilarity and pairwise sampling do achieve?

To address this question, we modelled four SPLs mixing
“academic” examples and real cases: each is composed of a
behavioural model (given in terms of FTS) and its related
FD. We then applied t-wise [20] and similarity [15] tech-
niques to extract a set of configurations. By projecting the
FTS for each selected configuration, we get a transition sys-
tem from which it is possible to compute the coverage of the
FTS representing the whole SPL. Preliminary results indi-
cate that full coverage of states, transitions and actions can
indeed be achieved with few configurations (no more than 3)
and that 3-wise sampling worked best in these cases. Sim-
ilarity worked better than t-wise for t = {1, 2}, although
a detailed comparison is beyond the scope of this paper.
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Figure 1: The soda vending machine example [4]

All these samplings obtain full coverage with more products
than needed. In [10], we proposed a dedicated behavioural
heuristic requiring less configurations to compute all-states
coverage on our larger model. We therefore see potential for
mixing structural/behavioural coverage rather than system-
atically considering them in isolation.

The rest of this research in progress contribution is struc-
tured as follows: Section 2 introduces structural and be-
havioural coverage-driven test case generation for SPLs. Sec-
tion 3 presents our experimental set-up and results obtained
so far and Section 4 provides initial insights into these re-
sults. Section 5 covers related works while Section 6 con-
cludes the paper.

2. BACKGROUND
We focus on model-based testing of SPLs [29,32]. In this

context, roughly two categories of approaches can be consid-
ered: structural approaches, which samples configurations of
interest from the FD only, and behavioural approaches that
uses behavioural models (e.g. state machines, transition sys-
tems, automata, sequence diagrams) to generate test cases.

2.1 Structural SPL Testing
To tackle the combinatorial explosion of the number of

configurations to consider for a given FD, sampling tech-
niques have been proposed. They rely on the satisfaction or
maximisation of a criteria. Here, we consider t-wise feature
coverage and (dis)similarity.

2.1.1 T-Wise Coverage
Combinatorial Interaction Testing (CIT) [5,24,39] is a rel-

evant approach to reduce the number of products for test-
ing. CIT techniques sample large domains of test data. It is

based on the observation that most of the faults are triggered
by the interactions between a small number of features [24].
An interaction between t features denotes the possible im-
pact of one functionality on the others. Kuhn et al. [24]
have shown that covering all interactions between two fea-
tures are able to disclose 80% of the bugs. In some cases,
higher interaction strengths may be needed [25]. Consider-
ing all possible interactions between t features is called t-
wise coverage. Such approaches have been adapted to SPL
testing [19, 31, 33], generating configurations from the FD
covering all the valid 2-wise combinations of features. Some
of them, like [19], also consider higher values of t. Gener-
ally, no more than few dozens configurations are necessary
for pairwise coverage.

However, computing all the t-wise interactions in the pres-
ence of constraints, as it is the case for FDs, is NP-complete
in the general case [19,34]. As a result, although t-wise gen-
eration techniques from FDs have greatly improved, now
relying on efficient satisfiability (SAT) solvers [20], higher
interaction strengths (t > 2) may remain inaccessible for
large FDs. This is particularly problematic since 3-wise in-
teractions were shown to commonly appear in SPL testing
practice [36].

2.1.2 Similarity-Based SPL Testing
In model-based testing, it has been found that test suites

containing dissimilar test cases have a higher fault detection
power than similar ones [12, 13]. At the FD level, it means
that a set of configurations that have few selected/unselected
features in common is more likely to find faults (through as-
sociated test cases) than a configuration set that has more
commonalities in feature choices. This hypothesis has been
empirically validated [16]. To select such dissimilar config-
urations, we rely on a distance function. The advantage
over explicit t-wise coverage, is that the function is easy to
compute, allowing to scale easily to large FDs while still
achieving a decent t-wise coverage even for high interaction
strengths (t=6). Henard et al. proposed a search-based
technique for selecting and prioritising configurations ac-
cording to a similarity heuristic [15] for large FDs. Sub-
sequently, Al-Hajjaji et al. followed this direction [1], sug-
gesting that similarity testing has appeal even for smaller
FDs.

2.2 Behavioural Coverage Driven Testing
In our previous work [7–10], we defined and partially im-

plemented an approach to generate test cases from a be-
havioural model of the SPL. In particular, we defined the
notion of test case for a SPL as a sequence of actions to
perform on a valid product of the SPL [9, 10]. Let us call
such test case a behavioural test case to differentiate them
from configurations (products) to test in t-wise coverage and
similarity-based driven approaches. Behavioural test cases
are selected from Featured Transition Systems (FTSs), a
mathematical and compact representation of the behaviour
of a SPL [4]. FTSs are Transition Systems where transi-
tions have been labelled with feature expressions defining
which products may fire the transition. For instance Fig. 1
presents the FTS of a soda vending machine with its FD. If

we consider the transition s3
cancel/c−→ s4, only products that

do have the CancelPurchase feature (abbreviated as c) may
abort a transaction and return money. A behavioural test
case in the soda vending machine corresponds to a sequence



Table 1: Models characteristics
Model St. Trans. Act. Feat. Prod.
Soda V. M. 9 12 13 9 24
Minepump 25 41 23 9 32
Aero UC5 25 46 12 25 256
Claroline 106 2055 106 44 5.406.720

of actions in the FTS of Fig. 1: e.g., (free, tea, serveTea,
take). We make the distinction between executable and non-
executable behavioural test cases, i.e., behavioural test cases
that may be executed by at least one valid product of the
product line or not.

Using those notions, we re-defined classical TS coverage
criteria for FTSs as a function giving for a set of executable
test cases and a FTS, a value between 0.0 and 1.0 giving
the coverage percentage of the set over the FTS [10]. All-
states, all-transitions, all-transition-pairs, and all-path cri-
teria states that (resp.) all states, all transitions, all incom-
ing/outgoing transitions for each state, and all paths in the
FTS have to be covered (to read a coverage of 1.0) when
executing the set of executable test-cases. The executable
test cases selection problem may be seen as an optimiza-
tion problem where the coverage has to be maximized and
either the number of executable test cases or the number
of products needed to execute all the test cases has to be
minimized according to the wish of the test engineer. In a
first implementation, we designed an algorithm to select a
set of executable behavioural test cases that cover all states
(i.e., when executing all the test cases of the set, all states
are visited at least once) and executed it on different FTSs.

3. SET-UP AND RESULTS
To assess behavioural coverage of structural criteria, we

consider 4 models1 presented in Tab. 1: the Soda Vending
Machine is presented in Fig. 1; the Minepump model has
been presented by Classen et al. [3], it models the behaviour
of a SPL of pumps for a mine that has to be kept safe from
flooding and avoid explosions; we adapted the Aero UC5
model from Samih et al. [35], a SferionTM’s industrial sit-
uational awareness suite for helicopters flying in degraded
visual environments, to the FTS formalism; we adapted the
Claroline model, representing the navigational usages of a lo-
cal instance of this online course management platform, pre-
sented in our previous work [8], to the FTS formalism. Re-
garding t-wise generation, we elicited the SPLCAT tool [20]
for its performance [15] and PLEDGE [18] for similarity test-
ing.

Behaviour of the different models is represented using
FTSs. To measure the behavioural coverage and respond
to the research question of section 1, we used state, transi-
tion and action coverage for each product selected using the
different structural criteria.

3.1 Set-up
To perform our assessment, we carried out the following

steps for each model and each tool (SPLCAT and PLEDGE):

1. Generate a set of configurations from the FD using
each tool.

1All models may be downloaded from https://projects.
info.unamur.be/vibes/.

Table 2: SPLCAT and PLEDGE parameters
Model SPLCAT PLEDGE Nb. Config.

t x d
Soda V. M. 1 3 30 sec. 3

2 6 30 sec. 6
3 14 30 sec. 14

Minepump 1 2 30 sec. 2
2 7 30 sec. 7
3 13 30 sec. 13

Aero UC5 1 2 60 sec. 2
2 8 60 sec. 8
3 15 60 sec. 15

Claroline 1 6 60 sec. 6
2 21 60 sec. 21
3 71 60 sec. 71

2. Project the FTS model fts on each configuration c, to
get the behavioural model (Transition System) ts cor-
responding to c. The projection operator for FTSs has
been defined by Classen et al. [4]. It creates a new tran-
sition system ts from fts by removing all transitions
that may not be executed by c, all states that may not
be reached in c, and all actions that are never executed
in c. Feature expressions are dropped during the pro-
cess to give a behavioural model ts for c without any
variability information. For instance, the projection
of the configuration {V endingMachine, Beverages,
Soda, Tea, Currency, Euro} on the FTS fts in Fig.
1b will give a transition system corresponding to fts
with no feature expressions on the transitions, with-
out: states 2 and 4; their incoming and outgoing tran-

sitions; transition s4
take−→ s1; and pay, change, return,

and cancel actions.

3. For each configuration, compute the coverage of its ts
on fts: divide the number of states, transitions, and
actions in ts by the number of states, transitions, and
actions (resp.) in fts. The cumulated coverage is cal-
culated by dividing the number of states, transitions,
and actions in the union of the configurations’ ts by
the number of states, transitions, and actions (resp.)
in fts. The states, transitions, and actions appearing
more than once in the different configurations’ ts are
thus counted only once.

The FD of each model has been used as input to the
SPLCAT and PLEDGE tools to generate sets of configu-
rations. The SPLCAT tool can generate, for a given FD
and a given t between 1 and 3, a set of valid configurations
satisfying the 1-wise, 2-wise, or 3-wise FD coverage crite-
ria. The PLEDGE tool can generate, for a given FD and a
given number of configurations x, a certain time d, a set of x
configurations using an evolutionary algorithm maximising
the distance amongst configurations of the set. We used as
x the number of configurations generated by SPLCAT for
each model. The d parameter has the default value 60 sec.,
except for smaller models where it had (after several trials)
to be reduced to 30 sec. to avoid memory errors during ex-
ecution. Table 2 presents the different parameters used for
each model and the number of generated configurations. We
ran the tools on a Ubuntu Linux machine with an Intel Core
i3 (3.10GHz) processor and 4GB of memory.
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Figure 2: Model coverage of the Claroline and Minepump models

3.2 Results
We present here only results for the Claroline and Minepump

models – the most representative – in Fig. 22. The plots in
Fig. 2 presents the cumulated coverage for states, transi-
tions, and actions in the FTS for the different configura-

2Complete results may be downloaded from https://
projects.info.unamur.be/vibes/behavioural-cov.html



tions generated using PLEDGE and SPLCAT for the Claro-
line and Minepump models, added progressively by order of
coverage. Results for the Soda Vending Machine exhibit the
same tendencies as those of the Minepump model. The Aero
UC5 behavioural model has a coverage of 100% for states,
transitions, and actions for every configuration generated
using SPLCAT and PLEDGE, because its FTS has only 4
transitions specific to 2 different features, 2 transitions for
each feature, present in each configuration. The number of
configurations considered on the axis of Fig. 2 has been lim-
ited to 7 for states and actions and 14 for transitions. The
number of generated configurations is higher (as shown in
Tab. 2), but the cumulated coverage value did not increase
further after 7 configurations for states and actions coverage
and 14 configurations for transitions coverage.

4. INITIAL INSIGHTS
Regarding our research question, for the models we elab-

orated and settings we experimented, we obtained rapidly a
complete coverage: relatively few configurations are needed
to fully cover states, transitions and actions for the two ap-
proaches reported here. This is to be expected for our two
“academic” models, but on larger and more realistic mod-
els (Claroline), this tendency tends to be confirmed. Of
course, we need to replicate our assessment on a larger sam-
ple of realistic behavioural models, but this seems encour-
aging for the usage of structural coverage criteria at the FD
level beyond the scope of detecting behavioural feature in-
teractions [2].

Second, on these “small” feature models, exact t-wise cov-
erage (SPLCAT) yielded better coverage on all our behav-
ioural criteria for t = 3. This further indicates that higher
values than the usual 2-wise are relevant [36] and there-
fore should be used when the number of configurations is
“reasonable”. PLEDGE tends to outperform SPLCAT on 1-
wise (each feature is covered at least once) and 2-wise with
a smaller number of configurations. Since for a given execu-
tion time, a smaller number of configurations means more
time to evolve the population (set of configurations) and
less time spent computing distances amongst them, maybe
the poor performance of PLEDGE for t=3 (largest num-
ber of configurations) can be explained in such a way. We
also used the local maximum distance (termed “greedy” in
the tool),which is outperformed in terms of coverage by
the global maximum distance (termed “NearOptimal” in the
tool) [15]. It also seems that some of the memory errors
we ran into (related to thread creation) can be accounted
by this default choice of the algorithm. Indeed, threads are
associated to evolutions of the population and local distance
algorithm is fast: we therefore have a thread explosion prob-
lem on these“small”FDs. Therefore, additional settings and
trade-offs need to be investigated to be able to compare the
tools. Detailed tool comparison in this context is beyond
the scope of our research question. This is therefore left for
future work.

Finally, for both approaches, this initial assessment shows
that there is also a need for prioritisation and optimal be-
havioural coverage. For example, on the 71 configurations
generated by SPLCAT (t=3), one configuration is sufficient
to cover all states on both the Minepump and Claroline
models. This configuration can be found directly using our
all-states algorithm [10]. If similarity and t-wise coverage
are shown to consistently sample configurations that achieve

good behavioural coverage, as this assessment suggests, then
they can be used as first “filters” on very large feature mod-
els (assuming an intractable FTS for all-states algorithm)
to prune the FTS and then run a behavioural coverage gen-
eration technique. Prioritisation may be initiated at the
FTS level [8] and combined with behavioural/structural cri-
teria [9]. There is no such one-criteria-fits-all approach in
this endeavour: an all-states criterion may poorly cover tran-
sitions (e.g. on the Claroline case) [10]. Exploring syner-
gies between these criteria, both at the structural and be-
havioural models, therefore seems the best option.

4.1 Threats to Validity

4.1.1 Internal Validity
Our assessment was applied on 4 models only. In order

to mitigate this risk, we chose 2 “academic” models (Soda
Vending machine and Minepump) and 2 larger and “real”
models (AeroUC 5 and Claroline). These models were ob-
tained from different sources and represent different kinds
of systems: AeroUC5 is an embedded system where mod-
els have been designed by hand by engineers; Claroline is a
web-based application where models have been reverse en-
gineered from a running instance.

4.1.2 Construct Validity
The PLEDGE input parameters have been arbitrarily cho-

sen. To keep a fair comparison between the results of the
PLEDGE and SPLCAT tools, we kept the same number of
configurations x as generated by SPLCAT. Estimating the
time d, however is more tricky. In [15], we used the same gen-
eration time as SPLCAT. Unfortunately in our case, some
t-wise computations did take less than 1 second in SPLCAT
and PLEDGE does not allow to enter such values. Thus we
initially went for the default values provided by the tool. As
mentioned above, playing with a wider range of parameter
values and with different similarity algorithms will mitigate
this threat.

FTS models relate variability to behaviour using feature
expressions on transitions, other modelling languages may
relate variability to behaviour in other ways (e.g., associate
variability to states instead of transitions), which will give
different results for the state, transitions and actions cov-
erage. FTS is a basic formalism to which we can easily
transform other modelling languages and mappings. Thus,
we can investigate the influence of the mapping between fea-
tures and behavioural models.

4.1.3 External Validity
We cannot guarantee that our 4 models are representative

of real SPLs. We mixed sources and domains to mitigate this
threat. The largest model (Claroline) is a particular kind
of application: a web application accessible through PHP
pages in a web browser with a small number of states and a
huge number of transitions. This kind of application allows a
very flexible navigation from page to page either by clicking
on the links in the different pages or by a direct access with
a link in a bookmark or an e-mail. The Claroline FD has
few constraints, giving a large set of possible configurations
(over 5,000,000).

The small number of features in the considered FD does
not allow us to generalize our results for large product lines.
To the best of our knowledge, there exists no FD with both



a large number of features and an associated behavioural
model accessible for research and experimentation.

5. RELATED WORK
There have been few efforts to relate feature models and

behavioural models to reason about both structural and be-
havioural coverage. Lochau et al. [28] create a “150%” stat-
echart model resulting from the composition of individual
behaviours associated to features. They considered cover-
age from a feature interaction point of view, that is when
the composed machines interact through common model ele-
ments. Rather, we considered independent coverage criteria
at the FM level and assessed them on 4 different SPLs.

Other approaches usually reason at only one level to assess
coverage criteria for SPLs. For structural test generation, t-
wise coverage is an obvious metric [15, 33, 39]. Regarding
behavioural coverage, an initial approach [38] was to con-
sider a product-based approach [37] and assess coverage on
behavioural models where all variability has been resolved:
usual model-based criteria can then be used. There is how-
ever interest in defining variability-aware versions of these
criteria [9] and generation techniques [2, 27].

Finally, a promising way to evaluate coverage-driven SPL
testing is mutation analysis [16, 26] paving the way for new
SPL test generation techniques [14].

6. CONCLUSION
In this paper, we presented an initial assessment of SPL

behavioural coverage of configurations sampled by SPLCAT
(t-wise) and PLEDGE (dissimilarity-based) tools. We gen-
erated configurations for 4 models relatively small in terms
of variability: from 9 up to 44 features. We showed that, for
our models, the behaviour of the selected configurations cov-
ers the product line for a small set of configurations: from 3
for state and action coverage and between 5 and 8 for tran-
sition coverage. This seems promising for the usage of struc-
tural coverage criteria at the FD level. However, the formal
relationship between structural and behavioural SPL cover-
age remains to be established. As a result, maximising be-
havioural coverage cannot be done only according to struc-
tural criteria. For instance, the Claroline FTS may be 100%
covered using only 1 product. In our future work, we would
like to establish this formal relationship to be able to define
hybrid behavioural/structural criteria. The understanding
of this formal relationship will also be guided by further
replications of our assessment on larger and more complex
(features, constraints, hard-to-reach behaviour, etc.) mod-
els.
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