
State Machine Flattening, a Mapping Study
and Tools Assessment

Xavier Devroey, Maxime Cordy,
Pierre-Yves Schobbens

PReCISE, University of Namur, Belgium
{firstname.name}@unamur.be

Axel Legay
INRIA Rennes Bretagne Atlantique,

France
axel.legay@inria.fr

Patrick Heymans
PReCISE, University of Namur, Belgium

patrick.heymans@unamur.be

Abstract—State machine formalisms equipped with hierar-
chy and parallelism allow to compactly model complex system
behaviours. Such models can then be transformed into exe-
cutable code or inputs for model-based testing and verification
techniques. Generated artifacts are mostly flat descriptions of
system behaviour. Flattening is thus an essential step of these
transformations. To assess the importance of flattening, we
have defined and applied a systematic mapping process and
30 publications were finally selected. However, it appeared that
flattening is rarely the sole focus of the publications and that
care devoted to the description and validation of flattening
techniques varies greatly. Preliminary assessment of associated
tool support indicated limited tool availability and scalability on
challenging models. We see this initial investigation as a first step
towards generic flattening techniques and scalable tool support,
cornerstones of reliable model-based behavioural development.

Keywords—State machine; Flattening; Systematic Mapping

Study

I. INTRODUCTION

State machines are popular models of system behaviour.
By providing them with a formal semantics, one can perform
automated behavioural analysis (e.g. by model checkingor
model-based testing) and code generation. In order to model
complex systems in a concise and comprehensible manner,
state machines have been equipped with various abstraction
constructs such as hierarchy and parallelism [1]. Yet, abstrac-
tion comes with the cost of more elaborated semantics and
potential ambiguities (e.g. in UML), thus preventing the direct
use of automated analysis and generation tools.

Flattening [1] – a procedure that systematically transforms
hierarchical state machines into state machines where all states
are atomic – was proposed as an answer. It bridges succinct
modelling with formal semantics and automated analysis,
allowing to envision end-to-end model-driven validation chains
for complex systems [2]. Flattening plays a pivotal role in
behavioural analysis of software systems. Hence, its role
in model-basel development and validation should be fully
understood.

In spite of its importance and widespread use, there has
been no systematic effort to categorize flattening approaches
and their applicability. This paper is a first step in this

2015 IEEE Eighth International Conference on Software Testing, Verifica-
tion and Validation Workshops (ICSTW)
12th Workshop on Advances in Model Based Testing (A-MOST 2015)
978-1-4799-1885-0/15/$31.00 c�2015 IEEE

direction. We examine almost 20 years of scientific literature
and perform a systematic mapping study [3]. We follow the
systematic approach used in the medical field [4], which is
more appropriate for categorization purpose than systematic
literature reviews [3], [4]. We nevertheless incorporated some
relevant elements of systematic literature reviews as suggested
by Petersen et al. [3]. After an initial search that returned 167
publications, 30 of them were finally considered as relevant for
the mapping. Our mapping relies on 4 dimensions (also called
facets) covering research purpose, input/output models or the
type of publication where the flattening techniques are applied
or described. Our findings exhibit a balanced distribution of
flattening use cases between validation and code generation
purposes. We also demonstrate that flattening techniques are
generally not described thoroughly, for these are often but a
minor step of a larger process. Finally, the validation of the
flattening technique, although essential to gain confidence in
the engulfing approach, is insufficiently addressed. This latter
point is supported by preliminary experimentation indicating
that only a small number hierarchy and parallelism levels may
be supported.

The remainder of this paper is organised as follows. Section
II presents our mapping study process. Section III presents the
systematic map and discusses the results. Section IV describes
our tool assessment and Section V covers threats to our em-
pirical evaluation. Section VI wraps up with conclusions and
future research directions. A companion webpage including all
details of the mapping is available: https://staff.info.unamur.be/
xde/mappingstudy/.

II. SYSTEMATIC MAPPING PROCESS

The definition of our systematic mapping process is in-
spired by [3], [5], [6]. However, as suggested by Petersen
et al. [3], the process presented in Figure 1 and detailed
hereafter does not strictly follow the classical systematic
mapping review process. It incorporates practices of systematic
literature reviews methods: the depth of reading is not limited
to the abstract of the publications but rather adapted according
to the importance of flattening in the publication; a quality
assessment phase (see Section III) has been added to evaluate
the quality of the flattening description in the publications.

Phase 1: Research questions. The first phase is the
definition of the research questions. They help delimiting the
scope of the considered publications and allow to derive the
search strings for publications exploration in phase 2. There

Xavier Devroey
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://doi.org/10.1109/ICSTW.2015.7107408

Phase 1:
Definition of

RQs

Scope of
the search

Set of
publications

Phase 3:
Keywording

Classif.
scheme

Phase 4:
Mapping

Systematic
Map

Phase 3 bis:
Quality

assessment
Measures

Phase 2: Search of publications

Step 1: Exploratory seach

Step 2: Filtering using
incl/excl criteria

Step 3: Extension by
related works

[new studies
found] [no more new

studies found]

Fig. 1: Systematic mapping process

are two points covered in this mapping study: the first one ex-
amines flattening techniques suited to eliminate hierarchy and
parallelism (orthogonality) from a state machine-like model
while the second one looks at the application contexts of such
transformations. To cover flattening techniques, 2 research
questions with a practical perspective are defined: (RQ1)
What are the input and output models used in the different
flattening approaches? (RQ2) Do the different approaches sup-
port hierarchy (composite states) and parallelism (orthogonal
states) in the input model? Flattening application context is
covered by our last research question: (RQ3) In which context
are the different flattening approaches performed (e.g., code
generation, test-case generation, semantic definition, etc.)?

Phase 2: Search of publications. In the second phase
of the process, we gather relevant publications used to build
the systematic map. To that aim, we follow the strategy
presented in Figure 1. First, we explore electronic databases
and gather a raw set of publications. Next, we filter this
raw set, and consequently obtain an initial set of relevant
publications. From this initial set, we search for related (i.e.
cited) work. The discovered papers are filtered and then added
to the set of considered publications. We repeat the process
until no new publication is added. To perform the exploratory
search in the electronic databases, we defined search strings
designed to answer our research questions and inspired from
four publications known by the team and experts of the domain
[7]–[10]. The considered databases with the different search
strings are:

1) Google Scholar (http://scholar.google.be/):
(computer science) AND (intitle:(state
AND (machine OR machines OR chart
OR charts))) AND (flattening) AND
(orthogonal OR parallel)

2) Science Direct (http://www.sciencedirect.com):
pub-date > 2004 and (("state machine"
OR "state charts") AND (flat)
AND (orthogonal OR parallel)) and
TITLE(state)[All Sources(Computer
Science)]

3) Computer Science Bibliographies (http://liinwww.ira.uka.
de/bibliography/):
+(flat flattening) +state +(diagram?

chart?)

The initial search string used for Google Scholar did not
contain the computer science keywords which lead to
a lot of irrelevant results, most of them related to chemistry.
We initially restricted ourselves to the [2005-2012] period
to gather approaches compatible with the current version of
UML.1 We found 167 publications in Google Scholar, 9 in
Science Direct and 39 in Computer Science Bibliographies.
The four publications known by the team and domain experts
were contained in the 167 results returned by Google Scholar.
This tends to indicate the relevancy of our search strings. In
the second step, we filter the result according to the following
inclusion and exclusion criteria:

Inclusion criteria. Books, articles, proceedings, technical
reports and grey literature presenting a flattening technique
with a hierarchical and / or orthogonal state machine or similar
input (e.g., Harel Statecharts [1], etc.) and a flat state machine
or assimilate as output (e.g., Finite State Machine (FSM),
etc.) are included. We also consider the publications where
the produced output is source code, as source code may be
used for testing and verification as well.

Exclusion criteria. Literature only available in the form of
presentation slides, publications where a flattening technique
is only mentioned without details and publications citing a
flattening technique described in another paper is excluded.
In this last case, the cited papers are nonetheless considered
according to the same inclusion and exclusion rules.

Once filtered, our set was extended in the third step by
including papers cited in the publications. If the publication is
focused on flattening, the references are picked up by screening
the introduction, the background and related work parts. If
not, only the “flattening related part”, found by performing a
word search in the documents, is considered for the references
search. The considered regular expressions for the word search
were: flat.⇤; hierarch.⇤; orthogonal.⇤. We repeat Steps 2
and 3 until our set of publications does not change.

1UML2 was released in 2005. Please note that only the initial scope of the
publications is limited to the period 2005-2012. Our search process iteratively
expands that period and eventually allows to consider “non UML” papers, e.g.
[7], [10]–[13].

TABLE I: Research Focus Facet (RQ3)

Category Description
Code generation A model-driven approach generate or annotate source code

from a flat state machine.
Model checking A model to check is first flattened and the result is used as

input of the model checker.
Formal semantics The semantics of a state machine language is given as a

transformation of which flattening is a step.
Model-based test-
ing

Test-cases are generated from a flat state machine.

Flattening Flattening is studied outside the scope of a specific applica-
tion.

Example Flattening illustrates the use of a particular transformation
framework.

TABLE II: Input Model Facet (RQ1, RQ2)

Category Description
UML state ma-
chine

State machines built according to (any version of) the UML
standard.

Hierarchical
Finite State
Machine

Hierarchical models based on state machines (e.g., Harel
statechart [1]).

Hierarchical
Timed Automata

Hierarchical state machines enriched with time information.

After an initial filtering, we obtained an initial set of 24
publications [7]–[30]. A first execution of Step 3 gave us 28
new papers. Among those, only 12 met the inclusion and
exclusion criteria [31]–[42]. A second application of Step 3
gave us only one new publication, which did not match the
inclusion and exclusion criteria. We eventually obtained a total
of 36 publications.

Phase 3: Keywording and Mapping. The classification
scheme follows a two-step keywording process inspired by that
of Petersen et al. [3]. In the first step, each paper is screened
and tagged with keywords representing its contribution. In the
second step, the classification scheme is built by grouping and
combining the different keywords in higher level categories.
Contrary to [3], where the considered publications are focused
on the subject of the mapping study, we also consider papers
where hierarchical / orthogonal models flattening is not the
main aspect of the publication but only a step in a more general
process. To deal with such cases, we propose to: (1) read only
sections (adaptive reading depth [3]) of publications where
the model flattening aspect is explained and (2) guide the
keywording process by our research questions: a) The purpose
of the research (RQ3). b) The input model of the transforma-
tion (RQ1). c) The output model of the transformation (RQ1).
d) Does the transformation support hierarchy / orthogonality
in the input model? (RQ2). e) The implementation of the
transformation (RQ3). In order to reduce bias, the first step
of the keywording process has been done in parallel by
two reviewers. The reviewers associate keywords with each
publication, compare their results and discuss the differences.
If they cannot agree on a given paper, a third reviewer solved
the conflict. In our case, this happened for two papers: [27],
[40].

Next, the classification scheme is built by clustering the
keywords into different categories. Similar categories are
grouped to form what is called a facet. This is an iterative
process where the classification scheme is enriched with each
newly considered publication. In our case, four facets compose

TABLE III: Output Model Facet (RQ1, RQ2)

Category Description
Flat UML state
machine

Flat state machines based on any version of UML.

Source code Code issued from a programming language or a textual
specifications with a formal executable semantics.

Model checker
specification

Any model checker specification, e.g., UPPAAL automata
[43] or Mealy machines [44].

Finite State Ma-
chine (FSM)

This facet regroups the publications where the flattening
transformation produces a flat FSM which is not a UML state
machine. For instance: EFSM, Harel statechart, Symbolic
transition system.

Graph Any kind of graph that other than finite state machine, e.g.,
petri net or testing flow graph [11].

the classification scheme. The first facet (see Table I) is
concerned with the focus of the research described in the
publication. This characterizes the broader context in which the
flattening transformation is used. The second and third facets
(see Tables II and III, respectively) describe the formalisms of
the input and output models (respectively) employed by the
flattening techniques described in the different publications.
The last facet (see Table IV) classifies publications according
to their type. These types range from problem-oriented papers
(opinion, philosophical paper) to solution-oriented papers at
various stages of their maturity.

Once the classification scheme is defined, all the publica-
tions are classified. Despite our inclusion / exclusion criteria,
we still found publications which, after complete review, were
irrelevant with regards to our research questions: Brajnik [17]
presents the flattening proposed by Wasowski [10]; Briand et
al. [18] briefly discuss flattening in the related work part;
Masiero and Maldonado [22] present a way to produce a
reachability tree for hierarchical state machines which can
not be considered as a flattening; in [23] Posse preserves
the hierarchical aspect of state machine in its target model;
Zoubeyr et al. [30] do not describe any flattening technique;
Engels et al. [38] describe a flattening of UML class hierarchy.
All those publications match the exclusion criteria (flattening
technique is only mentioned or comes from another paper) but
were not detected earlier because of seemingly “too broad”
regular expressions. Irrelevant papers have been removed. Our
final selection consists of 30 classified publications.

Phase 3 bis: Quality Assessment. In parallel with Phase
3, we propose, as suggested by da Mota Silveira Neto et
al. [5] to assess the quality of the selected publications using
two groups of quality criteria. Our evaluation does not focus
on the quality of the transformations themselves but rather
on the quality of its description in the publications. The first
group evaluates the usability of the flattening technique in the
publication: G 1.1 Is there a tool implementation? G 1.2 Is
there a small example? G 1.3 Is there a more significant case
study (even if not fully detailed)? G 1.4 Are the input and
output models described? G 1.5 Does the publication present
the limitations of the transformation?

The second group evaluates the degree of generality of the
flattening process in the publication: G 2.1 Are there guidelines
for the transformation separated from the example of the
transformation (if any)? G 2.2 Does it detail the transformation
process for all the constructs of the input model? G 2.3 Does
the flattening technique support hierarchy? G 2.4 Does the

TABLE IV: Research Type Facet (RQ3) [3]

Category Description
Validation
Research

Techniques investigated are novel and have not yet been
implemented in practice. Techniques used are for example
experiments, i.e., work done in the lab.

Evaluation
Research

Techniques are implemented in practice and an evaluation of
the techniques is conducted. That means, it is shown how the
technique is implemented in practice (solution implementa-
tion) and what are the consequences of the implementation in
terms of benefits and drawbacks (implementation evaluation).
This also includes identifying problems in industry.

Solution Proposal A solution for a problem is proposed, the solution can
be either novel or a significant extension of an existing
technique. The potential benefits and the applicability of the
solution is shown by a small example or a good line of
argumentation.

Philosophical Pa-
pers

These papers sketch a new way of looking at existing things
by structuring the field in form of a taxonomy or conceptual
framework.

Opinion Papers These papers express the personal opinion of somebody
whether a certain technique is good or bad, or how things
should been done. They do not rely on related work and
research methodologies.

Experience Papers Experience papers explain on what and how something has
been done in practice. It has to be the personal experience
of the author.

flattening technique support orthogonality? A seemingly more
objective metric is the ratio of text lines dedicated to the
flattening process. Yet, it is rather cumbersome to perform
and may be irrelevant since (1) longer descriptions are not
necessarily more precise and complete, and (2) the exact value
of this ratio may vary upon the reviewers.

Results of quality assessment are presented in Table V. It
turns out that the huge majority (all but [34]) of the publica-
tions agree to define “flattening” as the “removal of hierarchy”
in a state machine. In 97% of the cases (Q.2.3), the input
model supports hierarchy of states, and 70% also supports
orthogonality in sub-states. The only publication present in
the mapping without supporting hierarchical states is [34]. We
believe this publication should have been discarded by the
protocol. Baresi and Pezzé [34] define the semantics of state
machines as high-level Petri-nets, but the notion of hierarchy
is applied to classes (although not as explicitly as in [38]) and
not states. Yet, the method may be applicable on hierarchical
state machines (see [21]).

Only 60% of the publications thoroughly explain which
constructs of the input model are supported (Q.2.2). These
publications include: three technical reports (T. rep.) [8], [14],
[19], one PhD thesis [15] and one book [16]. Those kinds
of publications typically allow for more space to provide
details than articles (Art.), book sections (B. sect.) or pro-
ceedings (Proc.). Two of the three publications belonging to
the “Example of transformation framework” facet, [9], [40],
are also included. The third publication [31] does not explain
the complete transformation in detail but rather focuses on its
performance. In most other cases [7], [11]–[13], [20], [24],
[29], [32], [33], [40], the input model is a simplified version
of UML state machine (except for [33] which uses Harel
statecharts as input) where most of the pseudo-states have
not been taken into account. In all those cases, the limitations
of the transformation are presented in the publication (Q.1.5:
67%). The only flattening techniques which takes history
pseudo-state into account is the one presented by Wasowski et
al. [10], [27]. Finally, the transformation proposed by David

Research
Focus Facet

Solution
Proposal

Evaluation
Research

Validation
Research

Philosophical
Paper

Opinion
Paper

Code
Generation

Model
Checking

Formal
Semantics

Model-Based
Testing

State Machine
Flattening

Example of
Transformation

Framework

8

7

4

6

2

3

1

1

1

Research
Type Facet

Fig. 2: Systematic Map: Research type and focus facets

and Möller [19] uses Hierarchical Timed Automata as input.
This formalism has a well-defined semantics, contrary to UML
state machines.

We observe that only a very low percentage of techniques
are validated on real or consequent case studies (Q.1.3: 27%).
It is not surprising since most of the publications are so-
lution proposals. Only half of the publications have a tool
implementation (Q.1.1). 90% of the publications illustrate the
transformation with examples (Q.1.2), 90% describe the input
and output models (Q.1.4), and 80% provide more detailed
guidelines. Only [26] and [37] give no example nor guideline.
The former describes very briefly the transformation in terms
of input and output models. The latter presents the specifi-
cations and an overview of a model-checking tool without
discussing the flattening transformation or the input model.

III. PHASE 4: MAPPING

The complete mapping is not presented here due to space
constraints. Figures 2 and 3 present a view of the mapping
in the form of a bubble plot. The numbers in the bubbles
represents the numbers of studies belonging to a particular
combination of facets. In Figure 2, the number of studies is
equal to 33. This is due to the classification of [15], [19] and
[20]. [15] is a PhD thesis classified as a validation research
and a solution proposal in the research type facet. In [19] and
[20] David et al. uses flattening in order to generate code for
a model checker, the reviewers agree to classify those two
studies in both code generation and model checking in the
research focus facets.

Research Type (RQ3). Regarding the type of contribu-
tions where flattening considerations appear, the vast majority
of them (93%) are solution papers (see Figure 2). This is
to be expected since flattening is a transformation used to
bridge high-level models with existing lower level analysis

TABLE V: Quality assessment results

Study ref.* G1.1 G1.2 G1.3 G1.4 G1.5 G2.1 G2.2 G2.3 G2.4 Type
Initial set
Auer [14] X X X X X X X X T. rep.
Badreddin [15] X X X X X X X X X Thesis
Binder [16] X X X X X X X Book
David [19] X X X X X X X X X T. rep.
David [20] X X X X X X X X X Art.
Gogolla [7] X X X X X X Art.
Holt [8] X X X X X X X X T. rep.
Ipate [21] X X X X Art.
Kalnins [9] X X X X X X X X Art.
Kansomkeat [11] X X X X X X Proc.
Kim [12] X X X X X X X Art.
Kuske [13] X X X X X X X Art.
Sacha [24] X X X X X X X Art.
Schattkowsky [25] X X X X X Art.
Schwarzl [26] X X Proc.
Wasowski [10] X X X X X X X X X Art.
Wasowski [27] X X X X X X X Art.
Weißleder [28] X X X Proc.
Yao [29] X X X X X X X X X Proc.
Added after iteration 1
Agrawal [31] X X X X X X T. rep.
Ali [32] X X X X X X X Proc.
Andrea [33] X X X X X X X Proc.
Baresi [34] X X X X B. sect.
Bjorklund [35] X X X X X Proc.
Bond [36] X X X Proc.
Diethers [37] X X B. sect.
Hong [39] X X X X X X X Art.
Minas [40] X X X X X X X X Art.
Riebisch [41] X X X X Proc.
Roubtsova [42] X X X X X X Proc.
Ratio of X 50% 90% 27% 90% 67% 80% 60% 97% 70%

UML
State

Machine

Hierarchical
Timed

Automata

Hierarchical
Finite State

Machine

Flat UML
State Machine

Source
Code

Graph

Model
Checker

Specification

Finite State
Machine

7

4

2

3

1

1

Output
Model
Facet

3

3 4

2

Input
Model
Facet

Fig. 3: Systematic Map: Input and output facets

tools and execution frameworks. We also note the poor level of
validation and evaluation of the flattening algorithms (only 2
papers belong to the evaluation and validation research facets).
Among these two publications, only [28] evaluated the effects
of flattening on test case generation in practice. Finally, one
paper [27] considers a formal framework to discuss flattening
algorithms complexity.

Research Focus (RQ3). The research focus facet illus-
trates a balanced distribution of the applications of flattening.
The most common application of flattening is code generation
(27%). However this has to be mitigated by the fact that two

publications [19], [20] are producing code to be used with a
model checker (UPPAAL). Other kinds of generated code are
dedicated to the synthesis of embedded systems [10], [24], [35]
or are instances of general purpose languages like JAVA [32].
Model checking uses are related to consistency management
[26], [29], [37], [42] or IP telephony [36]. Model checking
exploits the fact that flattening is also a way to provide a
formal semantics to hierarchical state machines [7], [13], [27],
[33]. Three of these publications focus on UML state machines
to make them analyzable. Model-based testing also exten-
sively uses flattening approaches (23% of the publications).
Unsurprisingly, most of the applications are centred on test
case generation and selection [11], [12], [21], [28], [39], [41].
Rather than generating test cases over a flattened state machine,
Ipate [21] and Binder [16] propose to refine test cases gradually
as states are decomposed. They argue that this incremental
approach better copes with complexity. Riebisch et al. [41]
use state diagrams to refine UML use cases and subsequently
generate tests at the system level. As for the other approaches,
the generation algorithm requires a flat state machine. Two
publications ([12], [39]) flatten Harel’s statecharts and UML
state machines (respectively) in order to generate flow graphs
on which test-case generation and selection techniques are
applied. Kansomkeat et al. [11] flatten UML state machines to
testing flow graphs in order to generate test-cases. Weißleder
[28] flatten UML 2 state machines and uses coverage criteria to
select and generate test-cases. The two last categories (covering
17% of the publications) concern the flattening transformation
by itself. Holt et al. [8] describe in details a flattening
algorithm implemented as a model transformation embedded
in an Eclipse plug-in. As opposed to other publications [13],
[25], [33] based on graph transformations, the algorithm is

TABLE VI: Results: Average execution time

Depth UMPLE SM2LIME SCOPE
0 0,306 sec. 0,038 sec. < 0,001 sec.
1 0,384 sec. 0,040 sec. 0,012 sec.
2 0,510 sec. 0,050 sec. 0,012 sec.
3 Error 2,726 sec. Error
4 Error > 24 hrs Error

given in an imperative manner. Finally, state machine flattening
transformations are sometimes given as illustrative examples
of model transformation frameworks [9], [31], [40].

Input and Output Facets (RQ1, RQ2). UML models are
the most common input to flattening algorithms (67%). There
are, however, disparities in the supported UML constructs. The
output of a flattening algorithm mainly depends on the goal
for which the techniques is used. Graphs are preferred for
providing formal semantics whereas verification-related work
generally provides specifications for a model checker. If we
match inputs with outputs, we infer that flattening is essentially
an exogenous transformation (i.e. where the target language is
different from the source language): UML state machines are
both input and output in only 20% of the publications.

IV. PRELIMINARY TOOL ASSESSEMENT

Our mapping study revealed a certain interest of the
community for the flattening problem. A significant number
of solutions have also been provided. Yet, tools are available
in only 50% of the publications and validation remains rare.
Practical questions concerning existing tool support naturally
arise. Thus, we decided to conduct an additional assessment of
available tool support in the form of experiments. In particular
we focused on one particular question: How do the proposed
techniques scale to models of increasing complexity?

Selection. Amongst the 15 publications that include an
implementation [8]–[10], [14], [15], [19], [20], [28], [29], [31],
[35]–[37], [39], [41] only 5 tools could be found on the Internet
[10], [14], [15], [28], [31]. We picked the three of them that
have a command-line interface: SCOPE [10], UMPLE [15]
and SM2LIME [14]. To evaluate their performance, we fed
them with a state machine example that we successively extend
with an increasing number of composite and orthogonal states.
Since we are interested in reusable flattening techniques and
we want our experiments to be reproducible, we considered
only publicly available tools and did not contact the authors
to obtain their implementation. Moreover, we are aware that
our evaluation does not cover every existing tool as some are
not presented in an elicited publication.

Experiment Design. Input models of varying complexity
were automatically generated as follows. We started from a
simple state machine sm0 as base model with an initial state
i, a simple state s and a final state f and two transitions: one
from i to s and one from s to f triggered by an event with
zero parameters. This machine with no composite state has a
depth equal to 0. To produce state machine smk with a depth
equal to k (k 2 {0, 1, 2, . . . , 10}), we replaced the simple states
in smk�1 by a composite state with two orthogonal regions
containing each one a sm0 state machine. We run each tool on
the ten input models and measure their execution time using
the Unix time (/usr/bin/time) command available on a

Linux machine (kernel version: #61-Ubuntu SMP Tue Feb 19
12:39:51 UTC 2013) with a Intel Core i3 (3.10GHz) processor
and 4GB of memory. To minimize effects due to other running
processes, we repeated each experiment five times.

Results & Discussion. Table VI presents the average
execution time of each tool. None of the three selected tools
could achieve more than 3 levels of depth: UMPLE exits
with a syntax error although sm3 is generated using the same
procedure as sm2; SCOPE exits with a memory corruption
error at sm3; SM2LIME could process a sm3 state machine
but with an execution time jumping from 0,050 to 2,726 and
has an (extrapolated) execution time greater than 24 hours for
a sm4 input model. Although the input models look simple,
they become increasingly challenging due to an exponential
blow-up in the numbers of parallel regions and interleaving
transitions. Moreover, the structure of our models impedes
the use of various optimization (e.g. eliminating superfluous
state/transitions using guard analysis [10]) and thus yield a
sharper growth in complexity. Thus, these models are not
intended to reflect any real system; they are meant to measure
the scalability of the proposed tools. Additionally, they are
agnostic of semantic variations of the different formalisms
[45], [46]. This allows for fair comparisons between the tools.

State explosion did not allow for fine-grained trend analysis
as models grow. However, our experiments confirm conclu-
sions drawn on the mapping study regarding limited avail-
ability (overall only 33% of the tools are freely available) and
suggest that hierarchy and parallelism threaten scalability. This
further motivates the need for new efficient techniques.

V. THREATS TO VALIDITY

Publication bias. We cannot guarantee that all relevant
publications were selected, especially since the state machine
flattening is rarely the main focus of the publications but rather
a way to achieve a more general purpose. We tried to mitigate
this threat by adopting an approach were the set of publications
is built iteratively by including cited papers. The publication
dates of the papers added at each step of publications search
(Phase 2) shows a good coverage for a period from 1994
to 2012: in the initial set the oldest publication ([22]) was
published in 1994 and the most recent ([15]) was published
in 2012; the publications added in iteration 1 were less recent
(from 1994 [33] to 2008 [40]) and the publication found
during iteration 2 (and excluded from the set of publications)
was published in 1996 ([47]). Moreover, the selected papers
originate from different research areas, thus indicating that our
selection procedure covers a large scope of publication. Finally,
the cited documents of rejected publications were still included
in the set at step 3 of the “search of publications” phase.

Research strings. The search strings used for database
mining may have many synonyms. Relevant publications may
thus remain undetected. Still, the used strings allowed us
to successfully detect the four initial papers known by the
domain experts. As for publication bias, the distribution of
the publication dates from 1994 to 2012 shows that the initial
publication period is no major threat to completeness.

Keywording. As the considered publications are not
all focused on flattening, the keywording process may be
influenced by the reviewer. To avoid bias, the keywording

process is performed in parallel by two different readers. Once
the keywords have been associated with the publications, the
readers compare their results and discuss the differences be-
tween associated keywords. If conflicts between the associated
keywords remain, a third party acts as an arbitrator.

Quality assessment. As for the keywording process, the
point of view of the reviewer may influence the answers to the
different questions. To overcome this as much as possible, only
yes/no answers are allowed. Since the quality assessment was
performed in parallel with the keywording phase, the two re-
viewers have assessed the quality of the different publications.
Again, divergences were solved by a third party.

Tool Selection. The rationale behind tool selection was to
assess whether tools mentioned in the publications were pub-
licly available and ready for practical use. While our answer
is negative to these questions, efficient tools may have been
missed because of our focus on scientific publications. This
threat can be mitigated by the fact that proper documentation
is necessary to understand the tool’s input model formalism
and thus generate models for experimentation. However, con-
ducting a wider assessment on a larger set of tools is part of
our research agenda.

Model Complexity. We created and systematically ex-
tended challenging models. Such an approach is relevant to
compare tools on a fair basis. To the best of our knowledge,
there exists no survey about the size and complexity of state
machines designed in industry. It is thus possible that such a
high level of complexity never occurs in practice.

VI. CONCLUSION

Due to their compactness and formal semantics, state
machines are a powerful means of modelling, verifying and
validating the behaviour of complex systems. However, ab-
straction mechanisms such as composite and parallel states im-
pede the use of automated analysis and generation techniques,
often requiring flat structures. Flattening is called to play a
crucial role in bridging abstract models with analysable and
executable ones. Recognising the lack of overall cartographies
of flattening approaches, this systematic mapping study is a
first step in this direction. In particular, we outlined a balanced
status were flattening is used equally for model-based valida-
tion (testing, verification) and code generation. Flattening also
barely appears to be an object of interest in itself but rather a
step towards a more general objective. This has impacts on the
quality of the description of flattening algorithms. First, precise
constructs supported by the flattening transformation are not
always provided, making the applicability of a given technique
to a specific context difficult to evaluate. Second, the validity
of the flattening transformation is barely addressed, which
is necessary to gain confidence in the quality of the bridge.
Mapping study conclusions are supported by our preliminary
assessment of flattening tools that exhibited reliability and
scalability issues on small but challenging models.

In the future, we would like to provide a complete (in-
cluding syntax and semantics concerns) taxonomy of flattening
approaches. This will enable the design of generic flattening
techniques and tools. We will also offer a sound evaluation
framework to compare flattening techniques and thus will help
understanding in which situation(s) a given flattening approach

is the most appropriate. These are mandatory steps towards
reliable, end-to-end, model-based behavioural development.

REFERENCES

[1] D. Harel, “Statecharts: a visual formalism for complex systems,” SCP,
vol. 8, no. 3, pp. 231–274, Jun. 1987.

[2] X. Devroey, M. Cordy, G. Perrouin, E.-Y. Kang, P.-Y. Schobbens,
P. Heymans, A. Legay, and B. Baudry, “A Vision for Behavioural
Model-Driven Validation of Software Product Lines,” in ISoLA ’12,
2012, pp. 208–222.

[3] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic
Mapping Studies in Software Engineering,” in EASE, Bari, Italy, 2008,
pp. 71–80.

[4] B. Kitchenham, “Guidelines for performing Systematic Literature Re-
views in Software Engineering,” EBSE, Tech. Rep. EBSE-2007-01,
2007.

[5] P. A. da Mota Silveira Neto, I. do Carmo Machado, J. D. McGregor,
E. S. de Almeida, and S. R. de Lemos Meira, “A systematic mapping
study of software product lines testing,” IST, vol. 53, no. 5, pp. 407–423,
2011.

[6] E. Engström and P. Runeson, “Software product line testing-a system-
atic mapping study,” IST, vol. 53, no. 1, pp. 2–13, 2010.

[7] M. Gogolla and F. Parisi Presicce, “State diagrams in UML: A formal
semantics using graph transformations,” in PSMT, 1998.

[8] N. E. Holt, E. Arisholm, and L. C. Briand, “An Eclipse Plug-in for
the Flattening of Concurrency and Hierarchy in UML State,” Simula
Research Laboratory, Norway, Tech. Rep. 2009-06, 2010.

[9] A. Kalnins, J. Barzdins, and E. Celms, “Model transformation language
MOLA,” Model Driven Architecture, vol. LNCS 3599, pp. 62–76, 2005.

[10] A. Wasowski, “Flattening statecharts without explosions,” ACM Sigplan
Notices, vol. 39, no. 7, pp. 257–266, 2004.

[11] S. Kansomkeat and W. Rivepiboon, “Automated-Generating Test Case
Using UML Statechart Diagrams,” in SAICSIT ’03, South Africa, 2003,
pp. 296–300.

[12] Y. G. Kim, H. S. Hong, D. H. Bae, and S. D. Cha, “Test cases generation
from UML state diagrams,” IEE Proceedings - Software, vol. 146, no. 4,
p. 187, 1999.

[13] S. Kuske, “A Formal Semantics of UML State Machines Based on
Structured Graph Transformation,” in UML ’01, ser. LNCS 2185.
Springer-Verlag, 2001, pp. 241–256.

[14] E. Auer and I. Porres, “SM2LIME : A Translation Tool From UML
State Machines to LIME Specifications,” IT Dpt. Abo Akademi Uni-
versity, Tech. Rep., 2009.

[15] O. Badreddin, “A Manifestation of Model-Code Duality : Facilitating
the Representation of State Machines in the Umple Model-Oriented
Programming Language,” Ph.D. dissertation, University of Ottawa,
2012.

[16] R. V. Binder, Testing object-oriented systems: models, patterns, and
tools. USA: Addison-Wesley, 1999.

[17] G. Brajnik, “Using UML State Machines for Interaction Design and Us-
ability Evaluation: An Extensive Literature Review,” Web Ergonomics
Lab, School of Computer Science, University of Manchester, UK, Tech.
Rep. September, 2011.

[18] L. Briand, Y. Labiche, and Q. Lin, “Improving Statechart Testing
Criteria Using Data Flow Information,” ISSRE, pp. 95–104, 2005.

[19] A. David and M. O. Möller, “From HUppaal to Uppaal : A translation
from hierarchical timed automata to flat timed automata,” BRICS,
University of Aarhus, Denmark, Tech. Rep. March, 2001.

[20] A. David, M. O. Möller, and W. Yi, “Formal Verification of UML
Statecharts with Real-Time Extensions,” in FASE ’02, 2002, pp. 218–
232.

[21] F. Ipate, “Test Selection for Hierarchical and Communicating Finite
State Machines,” The Computer Journal, vol. 52, no. 3, pp. 334–347,
May 2008.

[22] P. Masiero, J. Maldonado, and I. Boaventura, “A reachability tree for
statecharts and analysis of some properties,” IST, vol. 36, no. 10, pp.
615 – 624, 1994.

[23] E. Posse, “Mapping UML-RT State Machines to kiltera,” Applied
Formal Methods, Group School of Computing, Queen’s University,
Tech. Rep. 2010-569, 2010.

[24] K. Sacha, “Translatable Finite State Time Machine,” in SDL Forum.
Paris, France: Springer-Verlag, 2007, pp. 117–132.

[25] T. Schattkowsky and W. Müller, “Transformation of UML State Ma-
chines for Direct Execution,” in VLHCC. IEEE Computer Society,
2005, pp. 117–124.

[26] C. Schwarzl and B. Peischl, “Static and Dynamic Consistency Analysis
of UML State Chart Models,” in MODELS. Oslo, Norway: Springer-
Verlag, 2010, pp. 151–165.

[27] A. Wasowski, “On Succinctness of Hierarchical State Diagrams in
Absence of Message Passing,” ENTCS, vol. 115, pp. 89–97, 2005.

[28] S. Weißleder, “Influencing Factors in Model-Based Testing with UML
State Machines : Report on an Industrial Cooperation,” in MODELS.
Denver, CO: Springer-Verlag, 2009, pp. 211–225.

[29] S. Yao and S. Shatz, “Consistency Checking of UML Dynamic Models
Based on Petri Net Techniques,” in CIC. Washington, DC, USA: IEEE,
Nov. 2006, pp. 289–297.

[30] F. Zoubeyr, A. Tari, and A. M. Ouksel, “Backward validation of
communicating complex state machines in web services environments,”
Distributed and Parallel Databases, vol. 27, no. 3, pp. 255–270, Mar.
2010.

[31] A. Agrawal, G. Karsai, and F. Shi, “Graph Transformations on Domain-
Specific Models,” ISIS, Vanderbilt University, USA, Tech. Rep. Mic,
2003.

[32] J. Ali and J. Tanaka, “Converting Statecharts into Java Code,” in IDPT,
Dallas,Texas, 1999, p. 42.

[33] M.-S. Andrea and A. Peron, “Semantics of full statecharts based
on graph rewriting,” in Graph Transformations in Computer Science.
Springer, Berlin, 1994, pp. 265–279.

[34] L. Baresi and M. Pezzé, “On Formalizing UML with High-Level
Petri Nets,” in Concurrent object-oriented programming and petri nets.
Springer, 2001, pp. 276–304.

[35] D. Björklund, J. Lilius, and I. Porres, “Towards Efficient Code Synthesis
from Statecharts,” in pUML-Group@UML ’01, 2001, pp. 29–41.

[36] G. W. Bond, F. Ivancic, N. Klarlund, and R. Trefler, “ECLIPSE Feature
Logic Analysis,” in 2nd IP-Telephony Workshop, New York City, USA,
2001, pp. 100–107.

[37] K. Diethers and M. Huhn, “Vooduu : Verification of Object-Oriented
Designs Using UPPAAL,” in TACAS ’04, ser. LNCS 2988. Springer,
2004, pp. 139–143.

[38] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer, “Dynamic Meta
Modeling : A Graphical Approach to the Operational Semantics of
Behavioral Diagrams in UML,” in UML. York, UK: Springer-Verlag,
2000, pp. 323–337.

[39] H. S. Hong, Y. G. Kim, S. D. Cha, D. H. Bae, and H. Ural, “A test
sequence selection method for statecharts,” STVR, vol. 10, no. 4, pp.
203–227, Dec. 2000.

[40] M. Minas and B. Hoffmann, “An Example of Cloning Graph Transfor-
mation Rules for Programming,” ENTCS, vol. 211, pp. 241–250, Apr.
2008.

[41] M. Riebisch, I. Philippow, and M. Götze, “UML-Based Statistical Test
Case Generation,” in NODe ’02. Erfurt, Germany: Springer-Verlag,
2003, pp. 394–411.

[42] E. E. Roubtsova, J. van Katwijk, R. C. M. de Rooij, and H. Toetenel,
“Transformation of UML Specification to XTG,” in PSI ’02, 2001, pp.
247–254.

[43] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi,
“Uppaal - a tool suite for automatic verification of real-time systems,”
in Hybrid Systems III, ser. LNCS, vol. 1066, 1995, pp. 232–243.

[44] G. H. Mealy, “A method for synthesizing sequential circuits,” Bell
System Technical Journal, vol. 34, pp. 1045–1079, 1955.

[45] A. Taleghani and J. Atlee, “Semantic variations among uml statema-
chines,” in MODELS’06, ser. LNCS 4199. Springer, 2006, pp. 245–
259.

[46] M. Crane and J. Dingel, “Uml vs. classical vs. RHAPSODY statecharts:
Not all models are created equal,” in MDE Languages and Systems.
Springer, 2005, pp. 97–112.

[47] D. Harel and E. Gery, “Executable object modeling with statecharts,”
in ICSE. Berlin, Germany: IEEE, 1996, pp. 246–257.

