
Poster: VIBeS,

Transition System Mutation Made Easy

Xavier Devroey, Gilles Perrouin, Pierre-Yves Schobbens, Patrick Heymans

PReCISE Research Center, Faculty of Computer Science, University of Namur, Belgium

{xavier.devroey, gilles.perrouin, pierre-yves.schobbens, patrick.heymans}@unamur.be

Abstract—Mutation testing is an established technique used
to evaluate the quality of a set of test cases. As model-based
testing took momentum, mutation techniques were lifted to the
model level. However, as for code mutation analysis, assessing test
cases on a large set of mutants can be costly. In this paper, we
introduce the Variability-Intensive Behavioural teSting (VIBeS)
framework. Relying on Featured Transition Systems (FTSs), we
represent all possible mutants in a single model constrained by
a feature model for mutant (in)activation. This allow to assess
all mutants in a single test case execution. We present VIBeS
implementation steps and the DSL we defined to ease model-
based mutation analysis.

I. BACKGROUND

Mutation Testing. Mutation testing is a fault injection

technique used to assess the quality of a set of test cases for

a System Under Test (SUT) by seeing how many mutants of

this SUT are detected (killed) by the test cases [1]. A mutant

is generated from a SUT by applying a mutation operator

on its source code (e.g., changing one ‘*’ by a ‘/ ’). The

mutation testing community adapted mutation analysis to the

model level [2]. For instance, Fabri et al. [3] define a set of

mutations operators for Finite State Machines. One of the main

challenges in mutation testing is the execution of a set of test

cases on a large number of mutants. Indeed, each test case

will have to be executed on each mutant.

Software Product Line (SPL). SPL engineering is con-

cerned by the management of variability-intensive systems.

Such systems have shared and product specific assets which

are regrouped in features and organized in a Feature Diagram

(FD) [4]. To compactly represent the behaviour of a SPL,

Classen et al. developed Featured Transition Systems (FTSs)

[5]. A FTS is a Transition System (TS), where each transition

is tagged with a feature expression (represented as a boolean

expression over features of the system) specifying which

products may or may not fire the transition.

II. MUTANTS & FTS

In our previous work [6], we suggested to represent mu-

tants using the FTS formalism, by tagging transitions with

feature expressions specifying which mutant(s) may fire the

transition or not. The goal is to save execution time by

exploring common behaviour amongst mutants only once.

Fig. 1 illustrate our featured mutant modelling approach: we

consider 3 mutation operators: StateMissing which removes a

state from the base model; ActionExchange which replaces an

action on a transition in the base model by another action;

Mutants Family Model
(FTS)

Variability Model
(FD)

1 2 3

4

5

6

7 8 9
pay/true change/true

free /

true

take / true

close/¬smi_1

open/true take/

¬smi_1

cancel / ¬smi_4 return/¬smi_4

soda/true serveSoda / true

tea /¬aex_2

serveTea /

true
open /aex_2

 wis_3

¬wis_3

Mutants
m

smi_4 aex_2 wis_3smi_1

StateMissing
smi

WrongInitialState
wis

ActionExchanged
aex

xor

xor

Fig. 1. Mutants Modelling with FTS [6]

and WrongInitialState which modifies the initial state of the

base model. The StateMissing operator has been applied 2

times and the 2 others only once. The FD on top of Fig.

1 presents the different applications of the operators on the

base model (grouped by operator for readability): smi 4, sm 5,

aex 2, and wis 5. The FTS in Fig. 1 presents the result

of this application to the base model: in place of directly

modifying the base model (by removing a state, changing

an action, and changing the initial state), the operators have

modified feature expressions and transitions in the mutants

FTS in such a way that only if the feature corresponding to

the application of an operator on the base model is selected

in the FD, the mutation is active in the FTS. For instance,

transition (s3
cancel/¬smi 4

−→ s4) may not be fired (making s4
unreachable) if feature smi 4 is selected.

In model-based testing, the set of test cases is first defined at

an abstract level on the model of the SUT and made concrete

afterwards to match input values of the implementation [1].

To assess the quality of this set, one may perform an abstract

execution of each test case on the FTS. Each execution will

produce a feature expression representing all the mutants that

are not killed by the test case. For instance, considering the

Xavier Devroey
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://doi.org/10.1109/ICSE.2015.263

test set ts = {tc1 = (pay, change, cancel, return); tc2 =
(free, tea, serveTea, take)}: the execution of tc1 on the FTS

in Fig. 1 will produce the feature expression ¬smi4, stating

that mutants satisfying this feature expression are still alive. In

the same way, executing tc2 will produce the feature expres-

sion ¬aex2. Mutants satisfying one of the feature expressions

generated when executing test cases on the mutants FTS are

not killed by those test cases [7]. To get the list of the

mutants still alive, one will have to conjunct the mutants FD

and the disjunction of the generated feature expressions, e.g.,

dmutants ∧ (¬smi4 ∨¬aex2), where dmutants corresponds to

the equivalent feature expression of the FD in Fig. 1.

III. IMPLEMENTATION IN VIBES

The different mutation operators [7] are implemented in our

Variability-Intensive Behavioural teSting (VIBeS) framework

(in Java) [8]. The principle is the same for each operator:

1) the operator is created using a Transition System (TS)

and one or more selection strategies according to the

type of operator (e.g., StateMissing operator will need

a state selection strategy to select the state that will be

removed);

2) the user has to call the apply() method, this will

perform the mutation by selecting elements (transitions,

actions, and/or states) and generate a unique key for this

mutation (used in the feature name in the mutants FTS);

3) the method result() returns a fresh TS, representing

the result of the mutation;

4) the method transpose(FTS) alters the given mu-

tants FTS (representing the existing mutants) to add

the current mutation returned by result() by adding

transitions and or modifying feature expressions on

existing transitions (transformations for each operator

may be found in [7]).

To ease the use of the VIBeS API, we defined a small Java

DSL to create and manipulate TSs and perform mutation on

them. For example, the following code loads a TS model from

an XML file and applies an ActionExchange mutation operator

on it:

T r a n s i t i o n S y s t e m t s = l o a d T r a n s i t i o n S y s t e m (”
model . t s ”) ;

M u t a t i o n O p e r a t o r op = a c t i o n E x c h a n g e (t s)
. t r a n s i t i o n S e l e c t i o n S t r a t e g y (RANDOM)
. a c t i o n S e l e c t i o n S t r a t e g y (RANDOM)
. done () ;

The user may perform the mutation using this operator and/or

perform an update of the mutants FTS, equal to the original

TS before the first mutation:

FTS m u t a n t F t s = new FTS (t s) ;
op . a p p l y () ;
/ / Re tu rn t h e mutan t TS (f r e s h TS)
T r a n s i t i o n S y s t e m mutan t = op . r e s u l t () ;
/ / Update t h e Mutan ts FTS
m u t a n t F t s = op . t r a n s p o s e (m u t a n t F t s) ;
/ / Get t h e f e a t u r e name o f t h e m u t a t i o n
S t r i n g featName = op . g e t F e a t u r e I d () ;

It is also possible to use a configuration file to specify

mutants generation (operators, selection strategies, and number

of mutants)1:

c o n f i g u r e (” c o n f i g . xml)
/ / m u t a n t s f t s o u t p u t f i l e (o p t i o n a l)
. f t s M u t a n t (” m u t a n t s . f t s ”)
/ / m u t a n t s FD o u t p u t f i l e (o p t i o n a l)
. t v l M u t a n t (” m u t a n t s . t v l ”)
/ / TS m u t a n t s o u t p u t d i r . (o p t i o n a l)
. o u t p u t D i r (” . / t s−m u t a n t s / ”)
/ / t h e TS t o mu ta t e
. m u t a t e (t s) ;

To get all the mutants alive after executing a test case, the

programmer may call:

F E x p r e s s i o n a l i v e = g e t A l i v e M u t a n t s (t e s t C a s e ,
m u t a n t s F t s , o r i g I n i t S t a t e N a m e) ;

The original initial state name is needed because of the

WrongInitialState mutation operator which may have change

the initial state in the mutants FTS. The alive feature

expression may then be used as a constraint for the mutants

FD to get the number of mutants alive.

IV. CONCLUSION

In this paper we introduced VIBeS, a variability-based

framework to ease mutation analysis transition systems. We

exhibited the first steps of its implementation as well as a

JAVA DSL easing mutant modelling and analysis. Along with

the validation of our ideas on actual models, there are two

items on the future work agenda. First, we would like to study

higher-order mutation [2]. This can be easily modelled in the

FD by replacing xor relations by cardinalities ([x, y]). Yet,

challenges concern scalable higher-order mutant equivalence

and selection of stubborn mutants difficult to kill. The second

item concerns the application of model checking techniques

using ProVeLines [5], to generate mutant-killing test cases as

counterexamples violating a given temporal property.

REFERENCES

[1] A. P. Mathur, Foundations of software testing. Pearson Education, 2008.
[2] Y. Jia and M. Harman, “An Analysis and Survey of the Development of

Mutation Testing,” IEEE TSE, vol. 37, no. 5, pp. 649–678, 2011.
[3] S. Fabbri, J. C. Maldonado, and M. E. Delamaro, “Proteum/FSM: a tool

to support finite state machine validation based on mutation testing,” in
SCCC ’99, 1999, pp. 96–104.

[4] K. Kang, S. Cohen, J. Hess, W. Novak, and A. S. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Carnegie-Mellon
Univ., Soft. Eng. Inst., Tech. Rep., 1990.

[5] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, and J.-
F. J.-F. Raskin, “Featured Transition Systems: Foundations for Verify-
ing Variability-Intensive Systems and Their Application to LTL Model
Checking,” IEEE TSE, vol. 39, no. 8, pp. 1069–1089, 2013.

[6] X. Devroey, G. Perrouin, M. Cordy, M. Papadakis, A. Legay, and P.-Y.
Schobbens, “A Variability Perspective of Mutation Analysis,” in FSE’14.
ACM, 2014, pp. 841–844.

[7] X. Devroey and G. Perrouin, “Mutation Testing Using Featured
Transition Systems,” PReCISE, University of Namur, Namur, Belgium,
Tech. Rep., 2014. [Online]. Available: https://projects.info.unamur.be/
vibes/mutation.html

[8] “VIBeS: Variability Intensive Behavioural teSting,” jan 2015. [Online].
Available: https://projects.info.unamur.be/vibes/

1An example of mutation configuration file may be downloaded at https:
//projects.info.unamur.be/vibes/mutation.html

