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ABSTRACT
Model-based mutation analysis is a powerful but expensive
testing technique. We tackle its high computation cost by
proposing an optimization technique that drastically speeds
up the mutant execution process. Central to this approach
is the Featured Mutant Model, a modelling framework for
mutation analysis inspired by the software product line par-
adigm. It uses behavioural variability models, viz., Featured
Transition Systems, which enable the optimized generation,
configuration and execution of mutants. We provide results,
based on models with thousands of transitions, suggesting
that our technique is fast and scalable. We found that it
outperforms previous approaches by several orders of mag-
nitude and that it makes higher-order mutation practically
applicable.

Keywords
Mutation Analysis, Variability, Featured Transition Systems

CCS Concepts
•Software and its engineering → Software testing
and debugging; Software product lines; •General
and reference → Performance;

1. INTRODUCTION
Mutation analysis is an established technique for either

evaluating test suites’ effectiveness [5, 24, 50] or supporting
test generation [23, 50, 54]. It works by injecting artificial
defects, called mutations, into the code or the model under
test, yielding mutants, and measures test effectiveness based
on the number of detected mutants.

Researchers have provided evidence that detecting mu-
tants results in finding real faults [5, 33] and that tests de-
signed to detect mutants reveal more faults than other test-
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ing criteria [7, 50]. This has been shown to be the case for
model-based mutation too: Aichernig et al. [1] report that
model mutants lead to tests that are able to reveal imple-
mentation faults that were neither found by manual tests,
nor by the actual operation, of an industrial system. In ad-
dition, model-based mutation’s premise is to identify defects
related to missing functionality and misinterpreted specifi-
cations [13]. This is desirable since code-based testing fails
to identify these kinds of defects [28,62].

Despite its power, mutation analysis is expensive, due to
the large number of mutants that need to be generated and
assessed with the candidate test cases. While this problem
has been researched for code-based mutation, e.g., [32,55], it
remains open in the model-based context. Since typical real-
word models involve thousands of mutants and test suites
involve thousands of test cases, millions of test executions
are needed. Addressing this problem is therefore vital for the
scalability of mutation. This a known issue that requires
further research, as pointed out in the surveys of Jia and
Harman [31], and Offutt [50].

To address this problem, we take inspiration from past
research on software product lines (SPL). As suggested in
our vision paper [18], we propose an approach to model mu-
tants as members (also called variants or products) of an
SPL. Considering mutants as part of a family rather than in
isolation yields a considerable advantage: shared execution
at the model level [15]. This contrasts with existing SPL
approaches [36, 37, 48] which require code and hence do not
apply to model mutants.

The key idea of our approach is to encode the mutants
as products of an SPL. To do so, we use a Feature Diagram
(FD) [34] together with a Featured Transition System (FTS)
that represent the variations (i.e., applications of mutation
operators) and the behaviour of the mutants, respectively.
FTSs have been proposed by Classen et al. [15] to compactly
model the behaviour of an SPL. They consist of a Transi-
tion System (TS) where each transition has been tagged to
indicate which products are able to execute the transition.
We use FTS to embed all the mutants in one model, called
the Featured Mutants Model (FMM).

To optimise test execution, we rely on the FMM to: (i)
only execute tests with mutants that are reachable by the
tests, (ii) share common transitions among multiple execu-
tions and, (iii) merge different executions that reach previ-
ously visited states. Therefore, instead of performing mul-
tiple runs, i.e., executing a test against each mutant, we
perform a single execution of the FMM.



We performed an empirical evaluation which demonstrated
that FMM: (i) yield significant execution speedups, i.e.,
from 2.5 to 1,000 times faster compared to previous ap-
proaches; (ii) make mutation analysis applicable to models
much larger than those used in previous studies; and (iii)
make higher-order mutation feasible.

In summary, the contributions of this paper are:

• FMM, a compact model which allows to easily generate
and configure mutants (of any order) of a transition
system.

• An implementation of FMM in the Variability Inten-
sive Behavioural teSting (ViBES) framework [19] mak-
ing it the first mutation testing tool for behavioural
models that supports higher-order mutation. Our im-
plementation is publicly available at: https://projects.
info.unamur.be/vibes/.

• A shared execution technique that allows executing
tests with all relevant mutants in a single run. To
the authors’ knowledge, this is the first approach that
optimizes model-based mutation analysis.

• An empirical evaluation on a mix of real-world and
generated models.

• Empirical results that contradict the general belief that
“higher order mutation testing is too computationally
expensive to be practical” [30]. Instead, they suggest
that it can be applied to real-world systems.

The rest of this paper is organised as follows: Section 2 re-
calls the main concepts of mutation testing and variability
modelling; Sections 3 and 4 present our approach and re-
sults, respectively. Finally, Section 5 discusses related work
and Section 6 concludes the paper.

2. BACKGROUND

2.1 Transition Systems
In this paper, we consider transition systems as a funda-

mental formalism to express system behaviour. Our defi-
nition is adapted from [6], where atomic propositions have
been omitted (we do not consider state internals):

Definition 1 (Transition System (TS)). A TS is a
tuple (S,Act, trans, i) where S is a set of states, Act is a set
of actions, trans ⊆ S × Act × S is a transition relation
such that the TS is deterministic (with (s1, α, s2) ∈ trans

sometimes denoted s1
α−→ s2), and i ∈ S is the initial state.

As a convention, we start and end executions in the initial
state. This ensure that they are finite. Fig. 1(a) presents
a (simple) example TS of a payment operation on a Card
Payment Terminal (CPT). The model starts in the initial
(Init) state where the card holder has to insert his card. The
CPT will select a means of payment (e.g., Visa, Mastercard,
American Express, etc.) and negotiate with the card chip
to agree on a protocol for the transaction. Transactions can
be either performed on-line or off-line using a PIN code or
a signature. Once the card holder has been identified, the
CPT will perform the transaction off-line or on-line (and
in this case, it will contact the card issuer to authorize the
transaction) and update the information on the card chip.

Table 1: Summary of model-based mutation ap-
proaches for behavioural model.

Reference Year
Employed

Models

Av.

tool
HOM

Fabbri et al. [22] 1999 statechart - -

Offutt et al. [49] 2003 statechart - -

Belli et al. [9] 2006
finite state
automata &
statechart

- -

Belli et al. [8] 2011
finite state
automata &
statechart

- X

Aichernig et al. [1] 2014 State Machines X -

Aichernig et al. [2] 2014 State Machines - -

Lackner &
Schmidt [40]

2014 State Machines - -

Aichernig et al. [3] 2015 State Machines - -

Krenn et al. [39] 2015 State Machines X -

This paper 2016
Transition
Systems

X X

Once the transaction has been completed (or aborted), the
card holder may remove her card from the CPT.

In model-based testing [61], test cases are derived from
such a model of the system. For instance, a test case is
atc = (insert card , select app, negociate with card , abort ,
remove card) for the TS of Fig. 1(a). Test selection can be
guided by coverage criteria. For instance, the all-actions cov-
erage criterion specifies that all the actions of the considered
TS must appear in at least one of the selected abstract test
cases. In this paper, we do not consider test concretization
(see e.g. [44]).

2.2 Mutation Testing
In model-based testing, mutants are introduced based on

model transformation rules that alter the system specifica-
tion. These rules are called mutation operators. An example
of mutant obtained from the state missing operator applied
on the Go offline state of the CPT system, is presented in
Fig. 1. There are two kinds of mutants, first-order mutants
when the original and the mutant models differ by a single
model transformation, and higher-order mutants, derived
from the original model after multiple transformations.

When a mutant is detected by a test case, it is called
killed. In the opposite situation, it is called live. In our
case, a mutant is killed if a test case cannot be executed.
For instance, the test case tc = (insert card , select app,
negociate with card , check PIN online, go offline, update
card info, remove card) will kill the mutant of Fig. 1(b)

since it fails to execute completely. A test case that can be
completely executed on a mutant will not detect (kill) it,
e.g., the test case atc defined in Section 2.1 will leave the
mutant of Fig. 1(b) live because it can be executed com-
pletely.

To measure the adequacy of testing, a standard metric
called mutation score is used. It is defined as the ratio of
mutants killed by the test set under assessment to the total
number of considered mutants. To calculate the mutation
score, one has to execute the whole test set against every
selected mutant. In our case, we consider deterministic TS
and stop the execution of a test case as soon as the TS is
unable to fire the next action. For the test case tc on the
mutant in Fig. 1(b), the execution is stopped when it reaches
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Figure 1: Card Payment Terminal: the original system and a mutant (state Go offline)

the CH Verified state as it may not execute the next action
(go offline) in tc and the mutant TS is considered killed by
tc. The mutant would have been kept live if another test
case tc′ had followed the “online path” after CH Verified .
Mutant execution is a time-consuming task [31], especially
for large models. In our experiments, it took 3 days to run
the mutants of our model with 10,000 states against each
test case. The times reported in Table 6 are for running one
mutant against one test case. In the following, we will call
this approach of executing each test against each mutant
model separately, the enumerative approach.

Related studies on model-based mutation approaches for
beahvioural model are briefly described in Table 1: publi-
cation, year of publication, model types used, available tool
and the use of Higher-Order Mutation (HOM). In literature,
most of the existing approaches have been evaluated based
on small models using a brute force technique that executes
all mutants with all tests. This results in extremely long
execution times and hinders scalability (in space and/or ex-
ecution time). We believe that tool scalability, and the lack
of available tools, are the main reasons why there are few
model-based testing studies and they mostly use small mod-
els. In their recent survey, Jia and Harman [31] motivate the
need for additional research on using mutation on program
artefacts other than code. We believe that, since our tool is
publicly available and scales well, it will foster experimenta-
tion on model-based mutation.

2.3 Variability Modelling
SPL engineering is a sub-discipline of software engineer-

ing based on the idea that we can build products (aka mem-
bers) of the same family by systematically reusing software
assets. Some assets are common to all members, whereas
others are only shared by a subset of the family. Such vari-
ability is commonly captured by the notion of feature, de-
fined as a unit of difference between products. Individual
features can be specified using languages such as UML, and
their relationships by Feature Diagrams (FDs) [34]. An ex-

ample of FD is provided at the top of Fig. 2. In this fig-
ure, the root feature (m) has 3 sub-features (smi , aex ,wis)
connected using a xor operator. FDs have their seman-
tics defined in terms of valid products, i.e., legal combi-
nations of features. In the FD of Fig. 2, a valid prod-
uct is {m, smi , smi Go offline} while the product {m, smi ,
smi Go offline, aex , aex issuer accepts} is invalid because
it does not respect the xor constraints. FD semantics is
formal [58] and FDs can be encoded as boolean constraints.
Thus, SAT or BDD solvers are commonly used to enumerate
products or to check their validity.

The main challenge in SPL engineering is to deal with
the combinatorial explosion induced by the number of pos-
sible products (2N for N features in the worst case). FTSs
address this problem and enable the efficient behavioural
model checking of SPLs [15]. FTSs are Transition Systems
(TSs) where each transition is labelled with a feature ex-
pression specifying which products of the SPL can execute
the transition. A FTS is thus a compact representation of
the behaviour of an SPL:

Definition 2 (Featured Transition System [15]).
A Featured Transition System (FTS) is a tuple (S, Act,
trans, init, d, γ), where: S, Act, trans are defined according
to definition 1; d is an FD; γ : trans 7→ [[d]] 7→ {true, false}
is a labelling function specifying for each transition which
valid products may execute it; this function is represented as
a boolean expression over the features of d; and init : S 7→
([[d]] 7→ {true, false}) a total function that indicates if a
state i ∈ S is an initial state for a product p ∈ [[d]], such that
for every product p ∈ [[d]] there is exactly one initial state,
which allows one to model mutants that change the initial
state of the system.

A FTS example is provided at the bottom of Fig. 2. Tran-
sition

CH verified
go offline/¬smi Go offline−−−−−−−−−−−−−−−−→ Go offline

may only be executed in products with a valid configuration
where the smi Go offline feature is not selected.
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Figure 2: Featured Mutant Model of Card Payment
Terminal

3. COMPACT MUTANTS MODEL
The key idea behind our approach is to represent mutants

as a family of variations of the System Under Test (SUT).
We model the SUT’s behaviour using a TS, called the origi-
nal TS (to distinguish it from the mutant TS). It is possible
to model these variants as an FTS and its corresponding
FD, where each feature corresponds to one application of
one mutant operator on the original TS. The FTS and the
FD represents all the possible mutants of an original TS and
is called the Featured Mutants Model (FMM).

For example, the FMM of Fig. 2 has an FD (at the top)
with 3 mutation operators: the state missing (SMI ) oper-
ator, which produces a mutant where one state is missing;
the action exchange (AEX ) operator, which produces a mu-
tant where one transition has its action changed (to another
action); and the wrong initial state (WIS) operator, which
produces a mutant where the initial state has been set to an-
other state. In this instance of the FD, the SMI operator has
been applied twice (smi go offline, smi NO GO), and the
AEX and WIS operators have been applied one time each
(aex issuer accepts, wis Card in). This FD represents four
mutants, where at most one leaf feature is selected. The
FTS at the bottom of Fig. 2 represents all the possible vari-
ations, corresponding to the four mutation operators, of the
original TS.

In order to derive one particular mutant (TS) from the
FMM, one may use the FTS projection operator [15]. Prac-
tically, this operator will first need a valid product represent-
ing the desired mutant, e.g., p = {m, smi , smi Go offline};
then, each feature expression of the FTS is evaluated with
features belonging to the product replaced by true, and other
features replaced by false; finally, transitions with a feature

Enumerative FMM
Input ts Input ftsfmm

0 s1
a

a

b

0 s1
a/γ1

a/γ2

b/γ3

Output tsm Output fts′fmm

0 s1
a

b

b

0 s1
a/γ1

a/¬aex ∧ γ2

b/aex ∧ γ2
b/γ3

Figure 3: An example of mutation, the AEX opera-
tor

expression evaluated to false (i.e., where γp = false) are re-
moved from the FTS, and the initial state is set to the only
state such that the feature expression on the initial tran-
sition is true (i.e., where init(i, p) = true). For instance,
the projection of the FMM of Fig. 2 on p will produce the
mutant TS of Fig. 1(b).

3.1 Building the Featured Mutants Model
We rely on the state-of-the-art operators proposed by Fab-

bri et al. [22] to generate mutants from a TS:

SMI State Missing operator removes a state (other than the
initial state) and all its incoming/outgoing transitions;

WIS Wrong Initial State operator changes the initial state;

AEX Action Exchange operator replaces the action linked
to a given transition by another action;

AMI Action Missing operator removes an action from a
transition;

TMI Transition Missing operator removes a transition;

TAD Transition Add operator adds a transition between
two states;

TDE Transition Destination Exchange operator modifies the
destination of a transition.

Each operator can be used to generate mutants using the
enumerative approach, where each mutant is formed as a
new variation of the original TS (possibly introducing non
determinism with AEX and TAD operators), or using the
FMM approach, where each mutant is an addition to the
FD. We detail hereafter the mutant generation procedures.
Enumerative approach: In the enumerative approach,
each operator (op) is defined as a model transformation with
input a TS (ts) representing the behaviour of the SUT. It
produces another (mutant) TS (tsm) representing the result
of an operator on ts. For instance, AEX operator, shown on
the left of Fig. 3, replaces the action a on transition s1

a−→ s0
by b. Algorithm 1 details the enumerative approach where
the set of mutants (muts) is produced by applying each op-
erator (in Ops) with random parameters a number of times
(defined for each operator by the times function) on the
original TS (line 4).



Algorithm 1 Mutant generation, enumerative approach

Require: ts = (S,Act, trans, i) {original TS}
Ops {the set of operators to use}
times : Op → N {function specifying for each operator
the number of applications}

Ensure: return = muts {set of produced mutants}
1: muts← ∅
2: for all op ∈ Ops do
3: for all i between 1 and times(op) do
4: muts← muts ∪ op(random(ts))
5: end for
6: end for
7: return muts

Algorithm 2 Mutant generation, FMM approach

Require: ts = (S,Act, trans, i) {original TS}
Opsfmm {set of operators to use}
times : Opfmm → N {function specifying for each oper-
ator the number of applications}

Ensure: fmm = (ftsfmm, fdfmm) {FMM representing
the mutants}

1: γ ← (λt→ true)
2: ftsfmm ← (S,Act, trans, i, fdfmm, γ)
3: fdfmm ← (m) {initialised to root feature m}
4: for all opfmm ∈ Ops do
5: for all i between 1 and times(op) do
6: fmm← opfmm(fmm)
7: end for
8: end for
9: return fmm

FMM approach: In the FMM approach, an operator
(Opfmm) is defined as a model transformation of a FMM
(representing existing mutants), that produces a FMM rep-
resenting (the previously existing mutants and) the result
of the Opfmm mutation on the original TS (obtained in
the FMM’s FTS by replacing the features by false in the
feature expressions). For instance, on the right of Fig. 3,
the AEXfmm operator replaces the action a on transition

s1
a−→ s0 of the base model by b as follows:

1. adding the feature expression ¬aex on transition s1
a/γ2−−−→ s0, stating that s1

a/¬aex∧γ2−−−−−−−→ s0 may be fired
only if the aex mutation is inactive (and if γ2 is true);

2. adding a transition s1
b/aex∧γ2−−−−−−→ s0, stating that the

transition is fired with a b action only if the aex mu-
tation is active (and if γ2 is true);

3. adding an aex feature to fdfmm representing the mu-
tation done by Opfmm (not shown in Fig. 3).

Algorithm 2 details the automated FMM building approach.
We start with the original TS (line 2) and a γ function that
labels each transition with a true feature expression (line
1). We then apply mutation operators (Opsfmm) a spec-
ified number of times (times(op) line 5). Contrary to the
enumerative approach, the mutation operators are applied
on the FMM under construction, which is reused in the next
iteration (line 6). This is mandatory as the FMM contains
all the previous mutations that are taken into account in the
model transformations (e.g., the γi expressions in Fig. 3). As
we choose to only perform Opfmm mutations on the original

Algorithm 3 FMM mutant execution

Require: fmm = (ftsfmm, fdfmm) {FMM model}
tc = (α1, ..., αn) {test case defined over the original TS}

Ensure: live {feature expression representing the mutants
live after executing tc}

1: live← false

2: paths← {(i α1/γ1−→ . . .
αn/γn−→ i)} {paths in ftsfmm}

3: for all p ∈ paths do
4: live← live ∨ (

∧
γi∈p γi)

5: end for
6: return live

TS, this forbids operator composition on (previously) mu-
tated elements. Doing so ensures that first-order mutation
maps to only one edit of the original TS. Further details
about the operators and specificities of the transformations
can be found on the VIBeS website [17] in a technical note.

3.2 Featured Mutants Model Execution
In our context, test cases are defined as a sequence of

actions in a TS (ts), such that one execution form a path
starting from and ending at the initial state (i) [20]: tc =

(α1, ..., αn) such that ∃(i α1−→ sk, ..., sl
αn−→ i). Recall that in

the enumerative approach, if a test case cannot be executed

by the mutant (denoted m
tc;) or does not end in the initial

state (considered as the accepting state), it is considered
killed. Otherwise, the mutant is considered live. The set of
live mutants, according to tc and the mutant set muts, is
defined as:

liveEnum(muts, tc) = {m ∈ muts | m tc
=⇒}

In the FMM approach, a test case can be executed on an

FMM’s (fmm) FTS (noted ftsfmm
tc

=⇒), if there exists at
least one mutant able to execute it. The enumerative ap-
proach executes each test case on each mutant separately.
In contrast, one execution of a test case on the FMM ex-
plores all the reachable mutants (identified by the collected
feature expression γ). The set of live mutants in the FMM
approach is defined as:

liveFMM (fmm, tc) = {p ∈ [[fdfmm]] | fts|pfmm
tc

=⇒}

Concretely, all possible paths in ftsfmm starting from i and
ending in i will be considered, which allows to deal with
possible non-determinism introduced by a mutation. The
live mutants are those able to execute at least one of those
paths, i.e., those for which the product p satisfies all the
feature expressions on the transitions of the considered path.
For instance, the test case:

tc =(insert card , select app,negociate with card ,

check PIN offline, go offline, update card info,

remove card)



Executing the FMM of Fig. 2, it will fire the following
transitions:

(
/¬wis Card in−−−−−−−−−→ Init , Init

insert card−−−−−−→ Card in,

Card in
select app−−−−−−→ App uninit ,

App uninit
negociate with card−−−−−−−−−−−−→ App init ,

App init
check PIN offline−−−−−−−−−−−→ CH verified ,

CH verified
go offline/¬smi go offline−−−−−−−−−−−−−−−−→ Go offline,

Go offline
update card info−−−−−−−−−−→ Completed ,

Completed
remove card−−−−−−−→ Init)

These transitions may only be fired by mutants for which all
the features expressions are true. In such a case, mutants
need to respect the following constraint:

¬wis Card in ∧ ¬smi go offline

All mutants in the FD of Fig. 2 that satisfy this feature
expression remain live after the execution of tc. The set
of mutants killed by the test case is computed using the
conjunction of fdfmm and the negation of this feature ex-
pression: fdfmm ∧ (wis Card in ∨ smi go offline), which
corresponds to the set of mutants:

{(m,wis,wis Card in), (m, smi , smi go offline)}

In practice, liveFMM (fmm, tc) will produce a feature ex-
pression representing all the live mutants as detailed in Al-
gorithm 3. Initially, the algorithm computes all the paths in
ftsfmm corresponding to the sequence of actions in tc (line
2). For one path, the conjunction of the feature expressions
gives the mutants able to execute this path (line 4). Effort
is saved this way by ignoring unreachable mutants and by
sharing the execution of the common transitions. This con-
junction disjuncts with the conjunctions of the others paths
to get the feature expression representing all the live mu-
tants (line 4). This step results in savings due to merging
of the considered executions. For performance reasons, the
paths variable uses a tree representation to merge common
prefixes of different paths.

We implemented the different mutant operators described
in Section 3.1 in order to perform classical mutation test-
ing (enumerative approach) as well as FMM generation and
execution in VIBeS, our Variability Intensive Behavioural
teSting Java framework [17].

3.3 FMMs as Higher-Order Mutants Model
Higher-order mutants can be valuable since some of them

tend to be hard to kill [25]. However, the number of mutants
grows exponentially according to the order n and explode
the involved cost. This is obvious in Algorithm 1, for the
enumerative approach, which generates all the n−1 mutants
to generate the n-order ones.

Using the FMM approach, modelling higher-order muta-
tion comes at (nearly) no cost. In a FMM (ftsfmm, fdfmm),
the set of allowed mutants (i.e., variations in ftsfmm) is rep-
resented by the feature diagram (fdfmm). For instance, the
constraints in the fdfmm of Fig. 2 allows to have exactly one
mutant at a time. Meaning that all valid mutants (products)
of this FMM will have at most one variation from the orig-
inal TS made by a mutation operator, e.g., Fig. 1(b) has

Figure 4: The Order 2 FMM of the CPT Example

(only) smi go offline feature active. The n order mutants
are represented by modifying the constraints on the fdfmm
so that they have exactly n mutations at a time. It means
that generating the FMM using Algorithm 2 will also gener-
ate the FTS (which will be the same) for order 1 to n FMMs.
For instance, the card payment terminal has the same FTS,
for all orders as shown in Fig. 2, but differ on the FD that
is described by Fig. 4 by the group cardinality stating that
exactly 2 subfeatures have to be selected. The FMM will
compactly represent all the C4

2 = 6 2-order mutants.
All-order mutants: Using the same argument, we gen-
eralize to higher-order mutants. In this case, the FMM
represents a single model with all possible n orders of mu-
tants (with n between 1 and the number of possible mu-
tants which is the number of leaf features in the FMM’s
FD). By setting the group cardinalities of the FD in Fig. 4
to [1..∗]. A valid product (mutant) of the FD will contain at
least one applications of mutation operator, e.g., a product
p = {m, smi go offline}, but also p′ = {m, smi go offline,
smi NO GO}, or p′′ = {m, smi go offline, wis Card in},
etc. In this case, the FMM compactly represent all the∑4
k=1 C

4
k = 15 n-order mutants. The number of live mu-

tants after the execution of a test case (tc) on a FMM (fmm)
can be obtained by counting the number of SAT solutions
(i.e., the number of possible assignments for each feature) to
fdfmm ∧ liveFMM (fmm, tc). Where fdfmm is the FMM’s
FD encoded as a boolean formula, i.e., the disjunction of
the mutation operator (Ops): fdfmm =

∨
o∈Ops o. For a

test set (ts), the number of live mutants is computed by
counting the number of SAT solutions to( ∨

o∈Ops

o

)
∧

( ∧
tc∈ts

liveFMM (fmm, tc)

)
.

4. EVALUATION
We formulate our research questions as follows:

RQ1 How does the FMM scheme compare with the “enumer-
ative approach” in terms of execution time ?

RQ2 Is higher-order mutation under the FMM scheme trac-
table?

4.1 Setup
We compare two test execution approaches: the enumer-

ative approach, which is the classical mutation testing ap-
proach used by previous research [2] where each test case
is executed against each mutant, and the FMM approach,
where each test case is executed (only once) on the FMM.
Models: We consider models from different sources with
varying size. Table 2 details the employed models. For each
model, we measure: the number of states (States); the num-
ber of transitions (Trans.); the number of actions (Act.);
the average degree of the different states that correspond to
the average number of incoming or outgoing transitions per



Table 2: Models characteristics
Model States Trans. Act. Avg.

deg.

BFS

height

Back

lvl tr.
S. V. Mach. 9 13 14 1.44 5 3
Minepump 25 41 23 4.64 15 9
Claroline 106 2055 106 19.37 1 105
AGE-RR 772 6,639 772 8.60 328 408
Elsa-RR 384 1,214 384 3.16 194 174
Elsa-RRN 615 1,771 615 2.88 369 289
Random 10,000 13,652 120 1.37 7,924 3,303

state (Avg. deg.); the maximal number of states between
the initial state and another state when traversing the TS
in breadth-first search (BFS height); the number of transi-
tions starting from a state and ending in another state with
a lower level when traversing the TS in breadth-first search
(Back lvl tr.).

Our models are: the soda vending machine model (S. V.
Mach.) which is a small example modelling the behaviour of
a machine selling soda and tea [14]; the mine pump (Mine-
pump) that models the behaviour of a pump which has to
keep a mine safe from flooding by pumping water from a
sink while avoiding methane explosions [14]; the Claroline
website (Claroline) that represents the navigational usages
of the online course management platform used at the Uni-
versity of Namur (http://webcampus.fundp.ac.be). It has
been reverse-engineered from an Apache log using a 2-gram
inference method [19,59]; the WordPress models (AGE-RR,
Elsa-RR, and Elsa-RRN ) that represent the navigational
usage of two different WordPress instances. They are also
reverse-engineered using a 2-gram inference method. For
the AGE-RR and Elsa-RR, we considered only the request
type (e.g., POST, GET, HEAD) and the requested resource
(e.g., “/index.php”) in the sequences used. For the Elsa-
RRN model, we considered the request type, the requested
resource and the parameter names (e.g., “?page=”) in the se-
quences used as input of the 2-gram inference method [59].
The random model has been generated based on the fol-
lowing procedure: a) we generate a set of random graphs
(basically directed arcs and nodes) and compute the differ-
ent measures from Table 2 (except number of actions) on
them; b) we selected those graphs that are likely to rep-
resent a real system according to Pelánek [56], i.e., those
having a small average degree, a large BFS height and a
small number of back level edges (in this order); c) we ap-
plied a random labelling multiple times and computed the
occurrence probability, i.e., the probability of the labels to
obtain a set of randomly generated TSs; d) we selected the
TS that had the following properties1: the probability of
the most occurring label in the TS was less than or equal to
6%, and the cumulated probability of the 5 most frequently
occurring labels was less than or equal to 20% [57]; e) we
ended up with one random model as recorded in Table 2.
Test Cases: For every model, we generate one set of tests
using random walks on the TS and one set satisfying the
all-actions criterion. The test sets were then executed with
the enumerative and the FMM processes. Table 3 records
the average size (and standard deviation) of the randomly
generated test cases, the size of the generated all-actions
coverage-driven test set and the average size (and standard

1These properties are likely to represent real systems [56]

Table 3: Test sets characteristics
Model Rand. test set All act. test set

Avg.
size

Std.
dev.

Nb.
t.c.

Avg.
size

Std.
dev.

S. V. Mach. 4.78 1.34 3 5.33 2.08
Minepump 5.65 1.23 9 6.11 1.45
Claroline 17.11 16.97 11 13.18 9.20
AGE-RR 21.13 24.58 274 27.11 33.62
Elsa-RR 10.57 13.12 109 21.10 33.45
Elsa-RRN 10.45 14.05 148 23.20 43.49
Random 469.62 279.34 2 468.50 118.09

Table 4: Mutant operators
Model WIS TMI AEX TDE TAD AMI SMI Total

S. V. Mach. 1 1 1 1 1 1 1 7

Minepump 2 4 4 4 4 3 2 23

Claroline 9 188 205 204 205 189 9 1,009

AGE-RR 73 525 663 663 663 516 75 3,178

Elsa-RR 36 102 121 121 121 106 38 645

Elsa-RRN 57 153 177 177 177 155 57 953

Random 942 1,276 1,365 1,365 1,365 1,295 954 8,562

deviation) of its test cases. The size of the random test set
is arbitrarily fixed to 100 test cases.
Model Mutants: We used the operators presented in
Section 3.1. Operators modifying states (WIS and SMI )
or transitions (TMI, AEX, TDE, TAD, and AMI ), resp.,
were applied arbitrarily for 1/10 of the number of states or
transitions, resp., in the model (with 1 as bottom value).
Since the operands are randomly chosen, we forbid multiple
applications of any operator on the same operands to avoid
duplicated mutants [52]. Table 4 presents the number of
mutants generated per operator for the studied models.
Mutant Execution: To avoid execution time bias from
the underlying machines, we execute each test case 3 times
with each considered mutant (for the enumerative version)
and on the FMM (for the family version).

Experimentation was performed on an Ubuntu 14.04 LTS
Linux (kernel 3.13) machine with Intel Core i3 (3.10GHz)
processor and 4GB of memory. The complete experiment
took approximately 2 weeks.

4.2 Results and Discussion
Fig. 5 presents the distribution of the test execution time

(in logarithmic scale on the y axis) for each studied model
with a box plot. The first two columns represent the to-
tal execution time taken by each test case when executed
on the live mutants and on the killed mutants according
to the enumerative approach. The third box presents the
execution time of the FMM (FMM approach). Note that
while the killed mutants do not require a complete execu-
tion in the enumerative approach, it is required for the FMM
mutants. This might provide an advantage to the enumer-
ative approach. To assess this, we consider the killed and
the live mutants separately. In all cases, we measure only
the execution of the models, avoiding time bias due to I/O
operations. As the execution time of a test case partially
depends on its size, the high number of outliers in Fig. 5
is explained by the variation of the test cases sizes. Tables
5 and 6 record different statistics over the execution time
of the models in µ-seconds. For the enumerative approach,
executing a test case on mutants that will remain live takes
more time than executing the same test cases on mutants
that are killed. This was expected since killed mutants do
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Figure 5: Execution Time: time required by a test case to execute with live, killed mutants and the FMM
mutants, time is measured in µsec..

not require a complete execution of the test case. In both
cases, the FMM execution runs faster, i.e., running a test
case on all the mutants at once is very fast, despite the
more complex (needed) exploration of the FMM’s FTS.

Regarding RQ1, the box plots of Fig. 5 and the values
of Tables 5 and 6 confirm that the execution time required
by the FMM approach is considerably lower than the time
required by the enumerative approach. The difference esca-
lates to several orders of magnitude when considering live
mutants. The difference between family-based and enumer-
ative approaches increases with the size of the model, indi-
cating the improved scalability of our approach.

To evaluate the statistical significance, we use a Wilcoxon
rank-sum test for the different models we considered: we
obtain a p-value of 1.343e − 09 for the random model and
p-values smaller than 2.2e−16 for the other models, confirm-
ing the hypothesis that FMM significantly outperforms the
enumerative approach, when considering 0.001 significance
level.

4.2.1 All-Order Mutation
Table 7 presents the number of all-order mutants for our

models, the number of mutants live after executing the ran-
dom and all-actions test sets (computed using SAT4J 2.3.5),

and their mutation score. Mem. Overflow denotes an over-
flow during SAT solving, improving this step by, for instance,
reducing the boolean formula to process is part of our future
work. Columns 5 and 8 give the SAT-solving computation
time (we set a timeout of 12 hours).

Overall, our results suggest that higher-order mutation
under the FMM scheme is tractable, answering positively to
RQ2. In particular, all-order mutation achieves very good
mutation scores (MS ≥ 0.99) when compared to first-order
mutation when this score can be computed. In our future
work, we intend to: (i) improve the scalability of mutation
score computation; and (ii) assess the practical relevance of
higher-order in test sets comparison.

Only one mutant is live for the soda vending machine
and the mine pump models. This mutant is a first order
mutant resulting from the TAD operator. Indeed, the TAD
operator adds new transition which cannot be detected by
test cases solely generated from the original TS, since this
transition does not exist in this model. All-order mutation
enables to quickly kill mutants of any order an to focus on
the interesting ones from a selective mutation perspective.
For example, the 2916 remaining live mutants resulting from
the execution of the all-action test suite are relevant to study
the mutation operators involved. Of course, they can also be



Table 5: Mutant (1st order) execution time in µ-seconds: minimal, maximal, median, mean, standard devia-
tion for every test case on all live and killed mutants of the enumerative method and of the FMM. Mutation
score (MS) of the all actions and random test sets are provided for each model.

S. V. Mach. model (all act. MS: 0.85 ; random MS: 0.85 )

Live m. Killed m. FMM Speedup

Min. 57 21 20 1.1

Max. 442 154 83 5.3

Median 113 79 38 2.5

Mean 120 78 39 2.5

S.Dev. 43 35 7.1 6.1

Minepump model (all act. MS: 0.60 ; random MS: 0.82 )

Live m. Killed m. FMM Speedup

Min. 441 43 26 1.7

Max. 623 212 64 9.7

Median 533 108 41 8

Mean 530 100 42 7.6

S.Dev. 35 49 6.5 34

Claroline model (all act. MS: 0.07 ; random MS: 0.27 )

Live m. Killed m. FMM Speedup

Min. 40,314 236 26 9.1

Max. 103,346 4,091 19,282 5.4

Median 53,951 652 58 380

Mean 57,000 870 280 100

S.Dev. 13,000 710 1,400 22

AGE-RR model (all act. MS: 0.66 ; random MS: 0.27 )

Live m. Killed m. FMM Speedup

Min. 598,520 5,644 39 140

Max. 3,948,806 99,754 46,839 84

Median 910,000 9000 110 3,300

Mean 1.1e+06 14,000 200 2,900

S.Dev. 590,000 12,000 790 870

Elsa-RR model (all act. MS: 0.75 ; random MS: 0.49 )

Live m. Killed m. FMM Speedup

Min. 20,743 775 104 7.5

Max. 59,237 13,400 3,109 19

Median 22,676 918 191 89

Mean 27,000 1,300 230 62

S.Dev. 8,500 1,500 170 84

Elsa-RRN model (all act. MS: 0.77 ; random MS: 0.30 )

Live m. Killed m. FMM Speedup

Min. 34,999 1,286 93 14

Max. 166,433 34,498 36,158 4.6

Median 45,000 1,600 180 200

Mean 52,000 2,400 300 90

S.Dev. 17,000 3,200 1,600 17

Table 6: Mutant execution time in µ-seconds
Random Model (all act. MS: 0.16 ; random MS: 0.63 )

Live m. Killed m. FMM Speedup

Min. 327,418 24,675 875 28

Max. 2,552,363 140,917 60,354 42

Median 1.3e+06 55,000 1,500 160

Mean 1.3e+06 63,000 1,800 370

S.Dev. 560,000 29,000 3,500 210

Table 7: All-order mutation score. For each test set
and model, the table records the number of possible
mutants (# mut.), the number of live mutants after
the test set execution (#Lv.), the mutations score
(MS) and the SAT computation time (T) in seconds.
Model # mut. All act. Rand

#Lv. MS T #Lv. MS T

S. V. Mach. 127 1 0.99 1.10 1 0.99 17.67

Minepump 8,388,607 1 >0.99 1.84 1 >0.99 15.72

Claroline 5.49e+303 Timeout Timeout

AGE-RR 4.71e+956 Timeout Timeout

Elsa-RR 1.46e+194 2916 >0.99 37.78 144 >0.99 10.19

Elsa-RRN 7.61e+286 36 >0.99 150.32 16 >0.99 83.04

Random 2.62e+2577 Mem. overflow Mem. overflow

used to generate test cases killing them in order to augment
the test suite. Exploring all-order MS in selective mutation
or test case generation scenarios are part of our future work.

4.2.2 Threats to Validity
Internal Validity: Our experiments were performed on
7 models: 2 academic examples (the soda vending machine
and the the mine pump), 4 larger real-world models (Claro-
line, AGE-RR, Elsa-RR, and Elsa-RRN) and a randomly
generated one. These models come from different sources
and represent different kinds of systems: embedded systems
designed by an engineer and web-based applications where
the model has been reverse-engineered from a running in-

stance. The random model was built upon a set of generated
TSs in order to match the real system state-space measures,
as described by Pelánek [56,57].
Construct Validity: We chose to apply mutants for 1/10
of the states and/or transitions of the mutated model. This
might result in more (or less) mutants than needed for the
larger models. However, this is expected when using mu-
tation. Additionally, since model-based mutation is applied
to the system’s abstraction, abstract actions represent many
concrete actions. It is therefore important to ensure a good
coverage of most of the model actions.

TS and FTS executions are different, and do not use the
same algorithms. In order to decrease the bias in measuring
execution time, both executions of the models have been
done using VIBeS [17], our Variability Intensive Behavioural
teSting framework Java implementation. The two execution
classes are different but use a variant of the same algorithm
described in Section 3.2. Moreover, we used the Stopwatch

Java class to measure the call to the execute method (i.e.,
model loading and result writing time have been omitted).
Finally, we ran each test case 3 times on each mutant model
(classical and FTS) to avoid bias due to process concurrency.
External Validity: We cannot guarantee that our re-
sults are generalizable to all behavioural models. However,
we recall the diversity of the model sources (hand-crafted,
reverse-engineered, and randomly generated to match real
system state-space) as well as the diversity of considered
systems.

5. RELATED WORK
Program mutation was proposed as a rigorous testing tech-

nique [12]. The idea was then applied to test specifica-
tion models [50] and recently to resolve software engineering
problems such as the improvement of non-functional proper-
ties [42], locating [53] and fixing software defects [43]. Here
we briefly discuss works related to model-based mutation
and testing, and code-based mutation.



5.1 Model-Based Mutation
The idea of model-based mutation has been elicited by

Gopal and Budd [13] who called it “Specification Mutation”.
Specification mutation promises to identify defects related to
missing functionality and misinterpreted specifications [13].
This is desirable since these kinds of defects cannot be iden-
tified by any code-based testing technique [28,62], including
code-based mutation.

Gopal and Budd [13] studied mutation for specifications
expressed in logic. Similarly, Woodward [63] mutated and
experimented with algebraic specifications. Mutating mod-
els like finite state machines and Statecharts has also been
done by Fabbri et al. [21]. Hierons and Merayo [27] used
Probabilistic Finite State Machines. All these studies sug-
gested a set of operators and report some exploratory re-
sults. Amman et al. [4] suggested comparing the original
and the mutated specification models using a model checker
in order to generate counterexamples. These can then be
used as test cases for the system under test. Black et al. [10]
defined a set of operators based on empirical and theoretical
analysis. They also defined a process of using them based
on the SMV model checker. Contrary to our approach, none
of these methods considers the mutation efficiency.

Recent research focuses on mutating behavioural models.
Aichernig et al. [2, 3] defined UML state machines mutant
operators and used them to insert faults in the models of
an industrial system. These were used to design tests. The
approach has a formal ground but neither considers optimis-
ing the test execution, nor higher-order mutation. Belli and
Beyazit [8, 9] compare event-based and state-based model
mutation testing. Both approaches were found to have simi-
lar fault detection capabilities. The authors also report that
it seems more promising to perform higher-order mutation
than first-order mutation but did not provide evidence in
support of this argument. Krenn et al. [39] made available
their MoMuT tool, but it is dedicated to test generation and
not mutant execution as our approach. In their most recent
work [38], they use an idea similar to FMM by triggering
mutations during exploration of the model, avoiding execu-
tion of similar prefixes in different mutants. Additionally,
MoMut does not support higher-order mutation.

Other applications of model-based mutation are to test
model transformations and test configurations. Mottu et
al. [47] defined a fault model relevant to the model transfor-
mation process based on which they propose a set of mutant
operators. Henard et al. [26] define mutant operators for fea-
ture models. Along the same lines, Lackner and Schmidt [40]
define mutant operators for the mappings of features with
other model artifacts. Finally, Papadakis et al. [51] demon-
strated that model-based mutation of the combinatorial in-
teraction testing models has a higher correlation with the
actual fault detection than the use of combinatorial interac-
tion testing. Thereby, they provide ground to the argument
that model-based mutation might be more effective than the
other model-based testing methods.

5.2 Model-Based Testing
Offutt et al. [49] define test criteria for state-based spec-

ifications. They also describe techniques to automatically
generate tests based on these criteria. Lackner et al. [41]
suggested a test generation approach for product lines. Sim-
ilar to our work they combine feature diagrams with state
machines to handle the product line variability. However,

their approach does not perform mutation and it is specific
to software product lines. Briand et al. [11] proposed a tech-
nique for generating tests from statecharts. Their results
were validated through code-based mutation.

5.3 Code-Based Mutation
In the context of code-based mutation, executable mu-

tants are needed. This introduces a compilation overhead
which is proportional to the number of mutants. To reduce
this cost, Untch et al. [60] proposed mutant schemata, an ap-
proach that replaces the program operators with schematic
functions. These functions introduce the mutants at run-
time and thus, only one compilation is needed. Ma et al. [45]
suggested using bytecode translation, a technique that intro-
duces the mutants directly at the bytecode level and thus
avoid multiple compilations.

To reduce the test execution overhead, several optimiza-
tions have been proposed. Delamaro and Maldonado [16]
suggested recording the execution trace of the original pro-
gram and consider only the mutants that are reachable by
each of the employed tests. Along the same lines, Mateo
and Polo [46] suggested stopping mutant executions when
they cause infinite loops. Jackson and Woodward [29] sug-
gested parallelizing the mutant execution process. Kapoor
and Bowen [35] proposed ordering the mutants in such a
way that the test execution is minimized. Papadakis and
Malevris [55] used mutant schemata to identify mutants that
are reached and infected by the considered tests. They then
reduce test execution by considering only the mutants that
cause infection. This technique was later evaluated by Just
et al. [32] who found that it reduces test execution by 40%.

6. CONCLUSION
This paper presents a family-based approach to model-

based mutation testing, named Featured Mutant Model. It
allows to generate mutants of any order and assess test ef-
fectiveness via an optimised execution scheme. Testing be-
havioural models with FMM is a completely automated pro-
cess that involves no extra manual or computational effort
over previous approaches.

In short, the use of FMM has the following benefits: (i) it
can easily reason about and generate behavioural mutants,
(ii) it can significantly speed up the evaluation of test suites
against mutants (up to 1,000 times) and (iii) it can effi-
ciently perform higher-order mutation. But, obviously, this
is not the end of the story.

In our future work, we will further investigate scalability
issues regarding all-order mutation analysis to be able to
compute mutation score for the largest models. This implies
the optimisation of the boolean formulas or approximate
computation heuristics. Finally, since “mutants are a valid
substitute for real faults” [33], we envision to develop test
case generation techniques based on mutation coverage of
the FMM.
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