Noname manuscript No.
(will be inserted by the editor)

Statistical Prioritization for Software Product Line
Testing: An Experience Report

Xavier Devroey - Gilles Perrouin - Maxime
Cordy - Hamza Samih - Axel Legay -
Pierre-Yves Schobbens - Patrick Heymans

Received: date / Accepted: date

Abstract Software Product Lines (SPLs) are families of software systems sharing
common assets and exhibiting variabilities specific to each product member of the
family. Commonalities and variabilities are often represented as features organised
in a feature model. Due to combinatorial explosion of the number of products in-
duced by possible features combinations, exhaustive testing of SPLs is intractable.
Therefore, sampling and prioritisation techniques have been proposed to generate
sorted lists of products based on coverage criteria or weights assigned to features.
Solely based on the feature model, these techniques do not take into account be-
havioural usage of such products as a source of prioritisation. In this paper, we
assess the feasibility of integrating usage models into the testing process to derive
statistical testing approaches for SPLs. Usage models are given as Markov chains,
enabling prioritisation of probable/rare behaviours. We used Featured Transition
Systems (FTSs), compactly modelling variability and behaviour for SPLs, to deter-
mine which products are realizing prioritised behaviours. Statistical prioritisation
can achieve a significant reduction of the state space, and modelling efforts can be
rewarded by better automation. In particular, we used MaTeLo, a statistical test
cases generation suite developed at ALLATEC. We assess feasibility criteria on two
systems: Claroline, a configurable course management system, and Sferion™, an
embedded system providing helicopter landing assistance.

X. Devroey, G. Perrouin (FNRS Postdoctoral Researcher), M. Cordy (FNRS Research Fellow),
P.-Y. Schobbens and P. Heymans

PReCISE, University of Namur, rue de Bruxelles 61, B-5000 Namur, Belgium

E-mail: xavier.devroey@unamur.be, gilles.perrouin@unamur.be, maxime.cordy@unamur.be,
pierre-yves.schobbens@unamur.be, patrick.heymans@Qunamur.be

H. Samih

Current affiliation: Alcatel-Lucent, IP T&R / WIRELESS TRANSMISSION

Route De VilleJust, 91620 Nozay France.

Affiliation at the time of work: ALLATEC, France & Inria Rennes, Bretagne Atlantique, Cam-
pus universitaire de Beaulieu, 35042 Rennes Cedex, France

E-mail: hamza.samih@gmail.com

A. Legay

Inria Rennes, Bretagne Atlantique, Campus universitaire de Beaulieu, 35042 Rennes Cedex,
France

E-mail: axel.legay@inria.fr

The final authenticated publication is available online at https://doi.org/10.1007/s10270-015-0479-8

Devroey, X, Perrouin, G, Cordy, M, Samih, H, Legay, A, Schobbens, PY & Heymans, P 2017, 'Statistical prioritization
for software product line testing: an experience report', Software and Systems Modeling, vol. 16, no. 1, pp. 153-171.
https://doi.org/10.1007/s10270-015-0479-8

Xavier Devroey
The final authenticated publication is available online at https://doi.org/10.1007/s10270-015-0479-8

Devroey, X, Perrouin, G, Cordy, M, Samih, H, Legay, A, Schobbens, PY & Heymans, P 2017, 'Statistical prioritization for software product line testing: an experience report', Software and Systems Modeling, vol. 16, no. 1, pp. 153-171. https://doi.org/10.1007/s10270-015-0479-8

2 Xavier Devroey et al.

Keywords Software Product Line Testing - Prioritization - Statistical Testing

CR Subject Classification D.2.5 - D.2.7

1 Introduction

Software Product Line (SPL) engineering is based on the idea that products of
the same family can be built by systematically reusing assets, some of them being
common to all members whereas others are only shared by a subset of the family.
Such variability is commonly captured by the notion of feature. Individual features
can be specified using languages such as UML, while their inter-relationships are
organized in a Feature Diagram (FD) [33].

SPL testing is the most common quality assurance technique in SPL engineer-
ing. As opposed to single-system testing, where the testing process considers only
one software product, SPL testing is concerned about minimizing the test effort
for the SPL products. Testing all products separately is clearly infeasible in real-
world SPLs, which typically consist of myriads of possible products. Automated
model-based testing [57] and shared execution [34] are established testing methods
that allows test reuse across a set of software. They can thus be used to reduce
the SPL testing effort. Even so, the problem remains as these methods still need
to cover all the products.

Other approaches consist in testing only a representative sample of the possible
products. Typical methods select this sample according to some coverage criterion
on the FD (e.g. all the valid couples of features must occur in at least one tested
product [16,43]). An alternative method is to associate each feature with a weight
and prioritize the products with the highest weight [31,32]. It helps testers to scope
more finely and flexibly relevant products to test than a coverage criterion alone.
Yet, assigning meaningful weights is cumbersome in the absence of additional
information regarding their behaviour.

Our effort in providing statistical testing techniques [62] for SPLs [22,47,49]
targets selecting products and generating test cases with respect to an usage model,
i.e., a Discrete-Time Markov Chain (DTMC). This usage model represents the usage
scenarios of the software under test as well as their respective probability. The
latter information allows one to determine the likelihood of execution scenarios,
and to rank these accordingly either for one or a subset of the products of the
SPL. There are two ways to associate scenarios to SPL products:

— The family-based approach consists in exploiting logs as a source of user in-
formation and infer the usage model using machine learning techniques. We
can then extract behaviour according to a probability range and relate them
to the design and feature models of the SPL [22]. The design model of the
SPL is provided explicitly as a Featured Transition System (FTS) i.e. a fun-
damental formalism initially dedicated to SPL model-checking [10]. As they
are extracted from the usage model, behaviours can be run on the FTS to
determine which products/features are involved (which corresponds to the pri-
oritized products/features set). To ease additional analyses, such as structural
test case generation (e.g. all-paths), our approach prunes the original FTS and
derives one corresponding to only extracted behaviour.

Statistical Prioritization for Software Product Line Testing: An Experience Report 3

— The product-based approach consists in modelling usage models from the on-
set, taking into account requirements and feature models as well as translating
expert knowledge to probabilities in the usage model [47]. Concretely, require-
ments are related to features (specified in an orthogonal variability model) via
a product matrix, while the usage model directly relates its transitions to prob-
abilities and requirements of the SPL [47,49]. Then, testers have to manually
specify the products they are interested in and, with the help of an industrial
tool [2,48], derive a pruned usage model corresponding to the behaviour of
these products and perform automated test case generation.

In this paper we report on our previous [22] and new experiences with these
two scenarios and demonstrate that these scenarios can be combined, notably to
assist testers in product-based testing using family-based reasoning and prioriti-
sation. To do so, we define feasibility criteria, that consider the reduction in size
of the FTS prior to testing, the scalability of the prioritisation algorithm and the
effort in obtaining the required models. By assessing these criteria on two very
different systems (a configurable course management system and an embedded
SPL) we demonstrate the feasibility of the proposed solutions and outline some
future directions.

The remainder of this paper is organized as follows: Section 2 presents the the-
oretical background supporting our approaches. Our statistical testing techniques
are detailed in Section 3. We report on our experience and feasibility criteria in
Section 4. Section 5 discusses related research, Section 6 presents challenges and
future research directions and Section 7 concludes the paper.

2 Background

In this section, we present the foundations underlying our approach: SPL modeling
and statistical testing.

2.1 SPL Modelling

Variability Modelling A key concern in SPL modelling is how to represent variabil-
ity. To achieve this purpose, SPL engineers usually reason in terms of features,
defined as end-user visible characteristics of a system [44]. Relations and con-
straints between features are represented in a Feature Diagram (FD) [33]. For
example, Fig. 1la presents the FD of a beverage vending machine [10]. A common
semantics associated to a FD d (noted [d]) is the set of all the valid products
allowed by d. A product derived from this diagram will correspond to a set of
selected features. In Fig. 1la, {v,b,t, cur,usd} corresponds to a machine that sells
only tea and accepts only american dollars. FDs have been equipped with formal
semantics [51], automated analyses and tools [33] for more than 20 years.

Behavioural Modelling Different formalisms may be used to model the behaviour
of a system. To allow the explicit mapping from features to SPL behaviour, Fea-
tured Transition Systems (FTSs) [10] were proposed. FTSs are transition systems
(TSs) where each transition is labelled with a feature expression (i.e., a boolean

4 Xavier Devroey et al.

VendingMachine
v
CancelPurchase Beverages FreeDrinks Currency
c b f cur
A /U\
Soda Tea Euro Dollar

AXor s t eur usd

return/c cancel /¢
soda/s @ serveSoda /s

Cchange/—vf a open/f
free /f tea/t @/se'eTea/t

take/-f

pay/-f

take / f

close/-f
(b) Featured Transition System (FTS)

Fig. 1 The soda vending machine example [10]

expression over features of the SPL), specifying which products can execute the
transition. Formally, an FTS is a tuple (S, Act, trans,i,d,~y) where :

— S is a set of states;

Act a set of actions;

trans C Sx Act x S is the transition relation (with (s1, @, s2) € trans sometimes
noted s; - s2);

— i € S is the initial state;

dis a FD;

v : trans — [d] — {T,L} is a total function labelling each transition with
a boolean expression over the features, which specifies the products that can
execute the transition.

For instance: —f in Fig. 1b indicates that only products without the free feature
may fire the pay, change, open,take and close transitions. A TS modelling the be-
haviour of a given product is obtained by removing the transitions whose feature
expression is not satisfied by the product. We define the semantics of an FTS as a
function that associates each valid product with its set of finite and infinite traces,
i.e. all the alternating sequences of states and actions starting from the initial state
available, satisfying the transition relation and such that its transitions are avail-
able to that product. According to this definition, an F'TS is indeed a behavioural
model of a whole SPL. Fig. 1b presents the FTS modeling a vending machine SPL.

Statistical Prioritization for Software Product Line Testing: An Experience Report 5

1/return

A

1/take

0.1/open

0.1/pay

0.9/tea 1/serveTea

0.9/free
0.9/take

1/close

Fig. 2 The soda vending machine example usage model (DTMC)

This definition differs from the one presented by Classen et al. [10], where only
infinite paths are considered. In a testing context, one may also be interested in
finite paths.

2.2 Statistical Testing

Whittaker and Thomason introduced the notion of usage model [62] and define it
as a TS where transitions have probability values corresponding to their occurrence
likelihood. Formally, a usage model is equivalent to a DTMC where transitions are
additionally decorated with actions, i.e. a tuple (S, Act, trans, P,) where :

(S, Act,trans) are respectively a set of states, a set of actions, and a set of
transitions (trans C S x Act x S);

P : trans — [0,1] is the probability function that associates each transition
(si,a,s;) the probability for the system in state s; to execute action o and
reach state s;;

— 7:85 —[0,1] is the initial probability distribution, that sums to 1;

- Vs; €85 zaeAct,sjeS.siimJ P(si, o, 85) = 1, that is, the total of the probabil-
ities of the transitions leaving a state must be equal to 1.

Note that in their original definition, DTMCs have no actions. We need them
here to relate transitions in a DTMC with their counterpart in an FTS. Also, we
consider that there is a single initial state 7, that is, 7(z) = 1.

3 Statistical Prioritization in SPL Testing

In our approach, we consider 3 models:

1. a FD d to represent the features and their constraints (in Fig. 1a);

2. an FTS fts over d (in Fig. 1b);

3. and a usage model represented by a DTMC dtmc (in Fig. 2.2) whose states,
actions, and transitions are subsets of their counterpart in fts:

Sdtme C Sfts N Actgtme C Athts Atransgime © transgis

6 Xavier Devroey et al.

Moreover, the initial state i of fts is in Sy, and has an initial probability of 1,
that is, 7(z) = 1.

An alternative would have been to rely on a unified formalism able to represent
both variability and probability (see, e.g., Cordy et al. [18]) in the same model.
However, we believe it is more appropriate to maintain a separation of concerns for
several reasons: first, existing model-based testing tools relying on usage models
(e.g., MaTeLo [2]) do not support usage models with variability. Implementing our
approach on top of such tools would be made harder should we use the aforemen-
tioned unified formalism (see also discussion in Section 4.4).

Second, the usage model can be defined by a system expert, but also obtained
from users trying the software under test, extracted from logs, or from running
code. These extractions methods are agnostic regarding SPL features and the re-
sulting usage model will represents the behaviour of one or more products of the
product line. One may merge logs of different products of the same product line
and use model inference techniques to build the usage model [54,59]. The correct-
ness of the usage model (i.e., the usage model only represents valid behaviour of
the SPL) depends on the inference method used and the number and size of logs
used as entry of this method. Methods producing correct usage models may be
interesting but are more computationally expensive and may not scale for large
logs [54]. Less accurate methods (e.g., 2-gram inference) scale for very large logs
and real data [59] but may produce usage models with errors in the description
of the behaviour of the SPL. For example, in the usage model of Fig. 2.2 one can
follow the path pay, change, tea, serveTea, take. This path actually mixes “pay
machine” (feature f not enabled) and “free machine” (feature f enabled). The
combined use of usage models and FTSs allows us to detect such inconsistencies.
For large and/or numerous logs, building the usage model will result from a trade
off between correctness and “budget” (time, computing resources).

Third, since the usage model may be built from existing software executions, it
may be incomplete (as in Fig. 2.2). There may exist FTS executions that are not
exercised in the usage model, resulting in missing transitions in the usage model.
Keeping the FTS and usage models separate is helpful to identify and correct such
issues.

Finally, classical statistical testing tools (like MaTeLo [2]) allow to define multiple
usage profiles, corresponding to different probability assignations to transitions,
e.g., to represent usages of different user roles (administrator, registered user, etc.).
In our approach, those usage profiles are represented by different usage models that
may be used with the same FTS.

Using the 3 models, we distinguish 2 possible test scenarios: product-based test
derivation (Fig. 3a) [46] and family-based test prioritization (Fig. 3b). Product-based
test derivation makes the assumption that a model of the product line may be
pruned in order to get a valid model for each product [7,47,49,61]: the test engineer
selects a product to test from the FD; the usage model is automatically pruned
using the FTS, giving a TS and a pruned usage model representing the behaviour
of this product; the test cases are generated from the pruned usage model using
existing test case generation tools (e.g., MaTeLo [2] in our case). The process
may be repeated for a set of representative products (e.g., selected using pairwise
testing [30,31,36,43]). We propose Family-based test prioritization, which prioritizes
products to test in a SPL according to their behaviour. The idea is to build a usage
model, automatically select representative traces in this model according to their

Statistical Prioritization for Software Product Line Testing: An Experience Report 7

% Usage Model

1. Prod_uct Proba. 1. Trace
Selection range Selection

\ 4

\
Finite
Traces

Product Usage Model

2. Filtering
and FTS'
Building

2. Models
Pruning

\ 4

Pruned valid
FTS' Finite
Usage Model TEw
3. Test-case 3. Product

Generation Prioritization

\d

Test-Cases Prioritized

Products list

(a) Product-Based Test Derivation (b) Family-Based Test Prioriti-
zation

Fig. 3 Family-Based and Product-Based Approaches

probability to occur (a probability interval defined by the engineer in our case),
and see (using the FT'S) which products may execute those traces. The list of valid
traces is sorted, in order to determine the products to test in priority.

3.1 Product-Based Test Derivation

Product-based test derivation in Fig. 3a is straightforward: the engineer selects
one product (by selecting features in the FD) to test, the tool then automatically
extracts from the FTS a TS corresponding to the product, and prunes the usage
model accordingly. We assume that the probabilities of the removed transitions are
proportionally distributed on adjacent transitions, so that the probability axiom
Vs; €5 : Zs]es P(s4,55) = 1 holds and balance between the probabilities of the

8 Xavier Devroey et al.

transitions with a same source state are kept [49]. Finally, the tool generates ab-
stract test cases (i.e., sequences of actions) [23] using statistical testing algorithms
on the usage model [25,62]. Those abstract test cases will have to be refined by
providing inputs and expected outputs for the different actions [57].

This scenario is proposed by Samih et al. [47,49] in the MaTeLo Product Line
Manager (MPLM) tool. Product selection is made on an orthogonal variability
model (OVM) and mapping between the OVM and the usage model (build by a
system expert using MaTeLo [2]) is provided via explicit traceability links to func-
tional requirements. This process requires to perform the selection of the product
of interest on the variability model and does not exploit the usage model during
this selection.

3.2 Family-Based Test Prioritization

Contrary to product-based test derivation, our prioritization process (in Fig. 3b)
supports partial coverage of the SPL by the usage model. For instance, the usage
model represented in Fig. 2.2 does not cover serving soda behaviour because no
user exercised it. The key idea is to generate traces from the usage model according
to their probability to happen using a interval given by the engineer (step 1). Only
traces in the model with a probability in this interval will be considered. E.g., one
may be interested in analysing highly probable behaviours (interval [0.5,1]). Only
one trace has a probability in this range: Pr(free,tea,serveTea,take) = 0.729,
which corresponds to the behaviour “serving tea for free”. The generated traces
are filtered using the FTS in order to keep only sequences that may be executed by
at least one product of the SPL (step 2). The result will be a pruned FTS, named
FTS’, according to the extracted traces. Each valid trace is executed on FTS’ to
determine the set of products that may effectively execute this behaviour. The
probability of the trace allows us to prioritize products exercising the behaviour
described in FTS’ (step 3).

3.2.1 Trace Selection in the usage model

The first step is to extract traces from the usage model according to desired pa-
rameters provided by the tester. Formally, a finite trace ¢ is a finite alternating
sequence t = (S0, @0, ..., ¥n—1, $n) such that (s, j41,8j41) € trans,Vj € [0,n — 1],
and sg is the initial state i. To perform trace selection in a usage model dtme, we
apply a all-paths algorithm parametrized with a maximum length ;4. for finite
traces and an interval [Prin, Prmas] specifying the minimal and maximal values
for the probabilities of selected traces. Formally:

allpaths(Imaz, Prmin, Prmaz, dtme) = {(i, a1, ..., an, 1) |
n<lmazA(Fk:0<k<nei=sy)
A(Prmin < Pr(i, a1, ...,an,1) < Prmag)}

where Tggme(i) = 1 and

PT(Z', g, - .-, Sn) = Tdtmc(i) X H;'L:olpdtmc(sj: Qj, 8j+1).

Statistical Prioritization for Software Product Line Testing: An Experience Report 9

We initially consider only finite traces starting from and ending in the initial state 4
(assimilate to an accepting state) without passing by 4 in between. These traces
correspond to a coherent execution scenario in the usage model. The l;;q4z bound
allows the algorithm to scale to large usage models [22].

The interval [Pryin, Prmas] is provided by the engineer based on his knowledge
of the SPL and the test prioritization purpose: an interval with high values (e.g.,
[0.5,1]) will give highly probable behaviours of the SPL. This is often desired for
non-regression testing scenario where the engineer wants to ensure that the main
functionalities of a SPL are still reliable after an update [37]. Assuming that the
usage model has been built using logs of running products, the engineer may also
be interested in testing behaviours with a low probability as they may find rare
bugs not discovered by the users of the products. Such strategies can be used, e.g.,
for intrusion detection [27].

The interval, its relevance, and generated test cases will depend on the usage
model source (e.g., built from running products, manually built by an engineer,
etc.) and the usage model shape (i.e., number of states, transitions, average states
degree, etc.). To have an idea of the interval to choose and the number of traces
that will be selected, the engineer may use random walks in the usage model to
generate random traces with their probability and see how they are distributed.

Practically, this algorithm will build an exploration tree where each node repre-
sents the exploration of a state. The exploration of a branch of the tree is stopped
when the depth is higher than l;,q2. This parameter is provided to the algorithm
by the test engineer and is used to avoid infinite loops during the exploration of
the usage model.

For instance, the execution of the algorithm on the soda vending machine
(vm) example presented in Fig. 1b, with a l;maz value of 7 (the size of the maximal
simple path) and an interval [0,0.1] to capture the least probable traces, gives 5
finite traces:

allpaths(7;0;0.1; dtmeym) = {

(pay, change, cancel, return); (free, cancel, return);
(pay, change, tea, serveTea, open, take, close);

(pay, change, tea, serveTea, take);
(

free, tea, serveTea, open, take, close)}

During the execution of the algorithm, the trace (free, tea, serveTea, take) has
been rejected since its probability (0.729) is not between 0 and 0.1.

The downside is that the algorithm will possibly enumerate all the paths in the
usage model depending on the Iy, value. This can be problematic and we plan
in our future work to use symbolic executions techniques inspired by work in the
probabilistic model checking area, especially automata-based representations [12]
in order to avoid exploring all paths.

3.2.2 FTS-Based Trace Filtering and FTS Pruning

We do not make any assumptions about the source of the usage model. There-
fore, step 2 serves as a sanity check to ensure that selected traces correspond to
behaviour that may be executed at least one valid product of the SPL. The set

10 Xavier Devroey et al.

Require: traces, fts
Ensure: traces, fts’
10 Sppsr < {igest 5 Gpeer < tpts 5 dprer < difs
2: for all t € traces do
if accept(fts,t) then
Stisr < Spier U states(fts,t)
Athts’ «— Athts’ Ut
transg,gr — transgy Utransitions(fts,t)
Yres' < fLabels(fts, t)ys
else
traces < traces \ {t}
10: end if
11: end for
12: return fts’

Fig. 4 FTS’ building algorithm

of products able of executing a trace ¢t may be calculated from the FTS (and
its associated FD). It corresponds to all the products (i.e., set of features) of
the FD ([d]) that satisfy all the feature expressions associated to the transitions
of t; i.e., prod(t, fts) = Mr_ip | Vpes(se —2 spi1)(p) = true}. From a prac-
tical point of view, the set of products corresponds to the products satisfying
the conjunction of the feature expressions 7y.s(sg LN sk+1) on the path of ¢
and the FD dy;s. As dy,, may be transformed to a boolean formula where fea-
tures become variables [19], the following formula can be calculated using a SAT
solver: A1 (vres(sk 2 ska1)) A booleanForm(dys).

To be valid, a trace has to be executable by at least one product of the SPL
(prod(t, fts) # 0), if this is not the case, there is an error in the usage model or in
the FTS. Depending on how the model has been built, the error may come from the
engineer who built the model (e.g., missing transition/state, extra transition/state,
wrong feature expression on a transition of the FTS, etc.) or, if the error is in the
usage model, from the model inference method used to generate the model from
a set of execution traces. Such errors have to be detected and reported to the
engineer who will decide what to do: either correct the usage model or the FTS
in order to avoid illegal behaviours; or ignore the error if it is not significant.

In our approach, the set of generated finite traces has to be filtered using the
FTS such that the following property holds: for a given FTS fts and a usage
model dtme, a finite trace t generated from dtmc represents a valid behaviour for
the product line pl modelled by fts iff there exists a product p in pl such that
t C [[fts‘p]]TS, where fts|, represents the projection of fts using product p and
[ts]Ts represents all the possible traces and their prefixes for a TS ts. The idea
here is to use the FTS to detect invalid finite traces by running them on it.

Practically, we will build a second FT'S” which will represent only the behaviour
of the SPL appearing in the valid finite traces generated from the usage model.
This FTS’ represents a prioritized subset of the original F'TS that may be used to
generate test cases [23]. Fig. 4 presents the algorithm used to build an fts’ from
a set of traces (filtered during the algorithm) and a fts. The initial state of fts’
corresponds to the initial state of the fts (line 1) and d in fts’ is the same as for
fts (line 1). If a given trace is accepted by the fts (line 3), then the states, actions
and transitions visited in fts when executing the trace t are added to fts’ (line 4 to
6). The accept(fts,t) function on line 3 will return true if there exists at least one

Statistical Prioritization for Software Product Line Testing: An Experience Report 11

cancel / ¢

Cchange/—'f

return/c

take/~f

: open/~f l:
@/sevrveTea /t

pay/-f

tea/t

close/-f

Fig. 5 FTS’ of the soda vending machine

product in dy¢s that has ¢ as one of its behaviours. On line 7, the fLabels(fts,t)
function is used to enrich the v function with the feature expressions of the
transitions visited when executing ¢ on the fts. It has the following signature:
fLabels : (FTS,trace) — (trans — [d] — {T,L}) = (trans — [d] — {T,L1}) and
fLabels(fts,t)y¢rs will return a new function ’Y}ts/ which will for a given transition
tr = (s; —% s5) return vy (tr) if o € t or e (tr) otherwise.

In our vm example, the set of finite traces with a probability between 0 and
0.1 selected in step 1 contains two illegal traces: (pay, change, tea, serveTea, take)
and (free, tea, serveTea, open, take, close), which both violate the (free A —free)
expression. Those 2 traces (mixing free and not free vending machines) cannot
be executed on the ftsym, and will be rejected in step 2. The generated fts),, is
presented in Fig. 5.

8.2.8 Product Prioritization

At the end of step 2 in Fig. 3b, we have an FTS’ and a set of finite traces in
this FT'S’. This set of finite traces (coming from the usage model) covers all the
valid behaviours of the FTS’. It is thus possible to order them according to their
probability to happen. This probability corresponds to the the cumulated indi-
vidual probabilities of the transitions fired when executing the finite trace in the
usage model. A valid finite trace t = (4,1,...,an,4) corresponding to a path
(i =5 ... 2% i) in the usage model (and in the FTS’) has a probability Pr(t)
(calculated as in step 1) to be executed. In order to improve the implementation,
we may retain the probabilities of the traces (Pr(t)) from step 1.

At this step, each valid finite trace t is associated to the set of products
prod(t, fts') that can actually execute t with a probability Pr(t). Product pri-
oritization may be done by classifying the finite traces according to their prob-
ability to be executed, giving t-behaviourally equivalent classes of products for
each finite trace t. For instance, for the trace tym = (pay, change, tea, serveTea,
open, take, close), generated for our vm example, the products will have to satisfy:

= f At A boolean Form(dum)
This gives us a set of 8 products (amongst 32 possible):

{(v, b, cur, t, eur); (v, b, cur, t,usd); (v, b, cur, t, c, eur);
(v, b, cur, t, c,usd); (v, b, cur, t, s, eur); (v, b, cur, t, s, usd);

(v, b, cur, t, s, c,eur); (v, b, cur, t, s, c, usd) }

12 Xavier Devroey et al.

Each of them executing tym with a probability Pr(tum) = 0.009, which is the
behaviour of the soda vending machine with the lowest probability.

4 Feasibility Study

In this section, we report on the feasibility of using and combining product-based
and family-based scenarios. By applying them on two systems: the first one is
Claroline [8], an open-source web-based application dedicated to learning and on-
line collaborative work; the second one is the landing symbology function, part of
Sferion™ | an industrial software supporting helicopter pilots during the landing
approach in degraded visual environment [1,48].

4.1 Feasibility Criteria

We assess the feasibility of our approach using the following criteria:

1. FTS pruning: What are the reductions gains (model pruning) achieved by
applying statistical prioritization?

2. Modelling: What is the modelling effort induced by our approach and what
are the consequences of modelling choices?

3. Scalability: How does prioritization scale to increasing probability ranges and
what are the implications for testing?

It is difficult to provide precise thresholds for these criteria. Testing should fit
a given budget, which is a complex trade-off involving testing time, human and in-
frastructure resources, level of system coverage desired, etc. Statistical approaches
covered in this paper are flexible to meet such a tradeoff. We argue that fixing
meaningful thresholds values requires additional experience, especially in indus-
trial settings where they both can be set and assessed. We therefore leave this
issue for future work, giving both quantitative and qualitative information stem-

ming from our experience applying our techniques on Claroline and Sferion™.

4.2 Claroline, an online course management system

The Claroline SPL' has already been presented in our previous work [22]. The
instance of Claroline at University of Namur? is the main communication channel
between students and lecturers and is used by approximately 7000 users. Students
may register to courses and download documents, receive announcements, submit
their assignments, perform online exercises, etc. Claroline is a configurable sys-
tem [14]. Contrary to classical SPL, the selection of the features does not occur
during the development of the software [44] (design time), but during its execution
(runtime). Thus, a configuration can dynamically evolve while the system is run-
ning: this requires the system architecture to be able to accommodate evolutions,
by following plugin-based or component-based architectural styles. Thanks to the
versatility of the feature concept [11], it is possible to represent design time and

1 Complete models are downloadable at https://projects.info.unamur.be/vibes/
2 http://webcampus.unamur.be

Statistical Prioritization for Software Product Line Testing: An Experience Report 13

Subsecription

Claroline

Course

UnregistredUser
RegisteredUser =

() OpenSubscription

Registration

boune <

Tools &

Visibility

oo |

Fig. 6 Claroline Feature Diagram

Legend:

Student Mandatory

Optional

L
of
A Allernative
—_

Teacher | Abstract

Concrete

() WithKeyRegistration
() withValidationRegistration

AllowedRegistration

RegistrationDenied

Ur yAdmin

ReactivableByOwner

() CourseLearnPath

O CourseUser
Courselndex

(O CourseAgenda

() CourseAnnoucements

U CourseGroup

O courseDiscussion

O coursework

O CourseDescription

PublicVisibility
MembersVisibility

MemberAccess

e

IdentifiedAccess

runtime configurations using the same formalism (FD), as configuration seman-
tics is ultimately given through the mapping with the FTS. In the Claroline case,
features represent installation parameters. A configuration represents a running
Claroline instance with a minimal set of data.

Usage Model Inference We derived the usage model®, from an anonymized Apache
access log containing 12.689.030 HTTP requests provided by the I'T support team

3 Tool implementation may be downloaded at https://projects.info.unamur.be/yami/

14 Xavier Devroey et al.

of the university (5,26 Go), using n-gram (contiguous sequence of n elements)
inference technique [28, 50, 54]. We were able to process the entirety of our log
database in approximately two hours, ending up in a usage model formed of 96
states and 2149 transitions.

Building Family Models To obtain the Claroline FD and FTS we proceeded the
following way. The FD was built manually from the Claroline documentation
and by inspecting a locally installed Claroline instance (Claroline 1.11.7) in ap-
proximately 3 days (by one person). The FD in Fig. 6 (additional constraints
have been omitted due to space constraint) describes Claroline with three main
features: User, Course and Subscription. Subscription may be open to everyone
(opt Open Subscription) and may have a password recovery mechanism (opt Lost
Password). User corresponds to the different possible user types provided by de-
fault with a basic Claroline installation: unregistered users (UnregisteredU ser)
who may access courses open to everyone and registered users (RegisteredU ser)
who may access different functionalities of the courses according to their privilege
level (Student, Teacher or Admin). The last main feature, Course, corresponds to
the page dedicated to a course where students and teacher may interact. A course
has a status (Awvailable, AvailableFromTo or Unavailable), may be publicly vis-
ible (PublicVisibility) or not (MembersVisibility), may authorize registration to
identified users (Allowed Registration) or not (Registration Denied) and may be
accessed by everyone (FreeAccess), identified users (Identified Access) or members
of the course only (MembersAccess). Moreover, a course may have a list of tools
(Tools) used for different teaching purposes, e.g., an agenda (opt CourseAgenda),
an announcement panel (opt CourseAnnoucements), a document download sec-
tion where lecturers may post documents and students may download them (opt
CourseDocument), an online exercise section (opt CourseExercise), etc. Since we
are in a testing context, one configuration of the FD does not represent a complete
Claroline instance, but the minimal instance needed to play a set of test cases.
Basically, it maps to a Claroline instance with one particular user and one partic-
ular course. This is similar to the technique presented by Segura et al. [53] used to
represent the testing entry domain of a e-commerce web site. In order to represent
a complete Claroline instance (with all its users and courses), we need to introduce
cardinalities [39] on the User and Course features in order to have multiple users
and multiple courses. Eventually we obtained a FD with 44 features.

Regarding the FTS, we employed a web crawler (Scrapy [52], a Python bot
that systematically browse and record information about a website) on our local
Claroline instance to discover states of the FTS, which, as for the usage model,
represent visited pages on the website. The crawler has been parametrized to
login as a visitor, a student, a teacher, and an administrator and to record acces-
sible pages. Internal states of the pages (e.g., checkboxes, forms, etc.) have been
ignored. Transitions have been added in such a way that every state may be ac-
cessed from anywhere. This simplification, used only to ease the FTS building, is
consistent with the Web nature of the application and satisfy the inclusion prop-
erty: Sgime C Spis N Actgime C Actpis A transgime C transygs. First, we tried to
build the FTS using the navigation model from the web crawler but found out that
some user traces show that the navigation in Claroline is not always as obvious as
it seems (e.g., if the users access the website from an external URL sent by e-mail
or use tabs in their browser). To remain general we decide to adopt the mentioned

Statistical Prioritization for Software Product Line Testing: An Experience Report 15

Table 1 Claroline Traces Selection

Run 1 Run 2 Run 3 Run 4
Imaa 98 98 98 98
Proin 1E—4 1E-5 1E—6 1E-7
Proax 1 1 1 1
#DTMC tr. 211 1389 9287 62112
#Valid tr. 211 1389 9287 62112
Avg. size 4,82 5,51 6,35 7,17
o size 1,54 1,54 1,62 1,66
Avg. proba. | 2,06E=3 | 3,36E—% | 5,26E~° | 8,10E—©
o proba 1,39E~2 | 5,46E~3 | 2,12E—3 | 8,18E~ ¢
#FTS’ st. 16 36 50 69
#FTS’ tr. 66 224 442 844

simplification. Finally, transitions have been tagged manually with feature expres-
sions based on the knowledge of the system (via the documentation and the local
Claroline instance). To simulate a web browser access, both to the root page or
directly to a sub-page of the website (e.g., from a direct link sent in an email), we
added a “0” initial state connected to and accessible from all states in the FTS.
The final FTS consists of 107 states and 11236 transitions and has been built in
approximately 4 days (by one person).

4.2.1 Results

The all —paths algorithm has been applied four times to the Claroline usage model
(see Tab. 1) with a maximal length of 98 (the maximal path length without any
loop in the usage model), which corresponds to the number of states, a maximal
probability of 1 and four different minimal probabilities: 1074, 107°, 107° and
1077 to observe patterns. Execution times range from less than a minute for the
first run with 211 selected traces to £8 hours for run 4 with 62112 selected traces.
Additionally, the algorithm has been parametrized to consider each transition only
once (i.e., a transition does not appear more than once in a selected trace). This
modification has been made since we discovered after a few runs that the algorithm
produced a lot of traces with repeated actions, which is of little interest for product
prioritization. Repetitions were due to the huge number of loops in the Claroline
usage model. All traces generated from the usage model are valid, this is caused
by the nature of the Claroline FD: most of the features are independent from
each other and few of them have exclusive constraints. The 2-gram solution used
to generate the usage model fits well in this case, as there is no trace selected
in the usage model that has been rejected. Sprenkle et al. [54] experimentally
demonstrate that increasing the n in n — gram generation of the usage model
does increase the size of the generated model in a non linear way (as long as n
is between 2 and 10). Increasing the n value in our case would just result in an
unnecessary increase of the model complexity. As expected, the average size of the
traces increases as the Pr,;, decrease (a lower probability allows longer traces to
be selected). The average size of the traces used to generate the usage model is
9,88. As explained in section 3, it is possible to prune the original FTS using the
valid traces in order to consider only the valid products capable of executing those
traces. In this case, it eventually reduces the number of states and transitions from
107 and 11236 (resp.) to 16 and 66 (resp.) in run 1 and to 69 and 844 (resp.) in

16 Xavier Devroey et al.

S|_sensor_based Legend:
Provide_slope_indication_for_LF <
Sl_from_DB [4 Mandatory

O/ Optional
HMS_D_Elbit "
HMS_D < A Aemsive
HMS_D_Thales Abstract
Concrete
Display_real_reference_objects|
Display_reference_objects_in_landing_zon
Display_visual_3D_cues
HOCAS_Honeywell
HOGAS <
HOCAS_GE_Aviation_Systems|
Check_for_obstacles

Mark_LP_by_handling_pilot only
Mark_landing_position Mark_LP <
Mark_LP_by_both_pilots.

Check_for_no_ground

DB_provided_by_GCassidian
Database <

DB_provided_by_customer,
ELOP

ows <
HELLAS

Fig. 7 SferionT™MLanding Symbology Function Feature Diagram

AeroUch

run 4. As expected, by controlling the interval size we can reduce the number of
traces to be considered and yield easily analysable FTS’.

4.3 Sferion™Landing Symbology Function
Sferion™is an industrial situational awareness suite for helicopters flying in de-
graded visual environments [1,48]. The landing symbology function supports the
pilot during the landing approach by marking the intended lading position on
ground using a head-tracked Helmet Mounted Sight and Display (HMS/D) and
Hands On Collective And Stick (HOCAS). The spatial awareness is enhanced
during the final landing approach by displaying 3D conformal visual cues on the
helmet. Obstacles in the landing zone are detected and classified using a real-time
OWS (Obstacle Warning System). Depending on the customer and the helicopter
platform, the landing symbology function may have different features (Fig. 7)
selected: ELOP or HELLAS OWS, SI_sensor_based or SI_from_DB as slope in-
dication provider for landing position, etc..

The models have been designed by engineers using MaTeLo [2] tool, OVM
and Matelo Product Line Management (MPLM) [49]. They have originally been
presented by Samih et al. [48]. MaTeLo supports the description of statistical usage
models by using extended Markov chains. MaTeLo’s usage model is a DTMC,
where the nodes represent the major states of the system and the transitions
are labelled with the actions or operations of the SUT with their probability to
be fired. In the Sferion™™landing symbology function model, the transitions are
tagged with a probability representing the likelihood, when we are in one state, to
execute the transition, and an action performed when the transition is executed;
and each action is associated to zero, one or more requirements. The variability
is described using OVM (Orthogonal Variability Model), each variation point is

Statistical Prioritization for Software Product Line Testing: An Experience Report 17

Table 2 Landing Symbology Function Traces Selection

Run 1 Run 2 Run 3 Run 4 Run 5
Proin 1E-T 1E~2 1E-3 1E—1 1E-P
Proaz 1 1 1 1 1
#UM tr. 0 0 8 50 306
#Valid tr. 0 0 8 50 306
Avg. size 0 0 15 16,68 18,58
o size 0 0 0,76 1,17 1,39
Avg. proba. | 0 0 2,19E—3| 5,67TE—*| 1,19E— 1
o proba 0 0 1,51E~3| 9,30E~*| 4,23E %
#FTS st. 0 0 18 23 23
#FTS’ tr. 0 0 12 12 12
#FTS’ act. | 0 0 27 40 42

Run 6 Run 7 Run 8 Run 9 Run 10
Proin 1E—S 1E~7 1E~8 1E7° 1E-10
Prmaz 1 1 1 1 1
#UM tr. 1870 8622 36582 123534 | err
#Valid tr. 1870 8622 36582 123534 | err
Avg. size 20, 85 22,99 25,15 27,17 err
o size 1,62 1,77 1,88 1,97 err
Avg. proba. | 2,20E~°| 5,02E=%| 1,21E=%] 3,59E~7| err
o proba 1,76E~4| 8,25E—°%| 4,01E=5| 2,18E~%| err
#FTS’ st. 23 23 23 23 err
#FTS’ tr. 12 12 12 12 err
#FTS’ act. 42 42 42 42 err

associated to zero, one or more requirement(s). The mapping, encoded in MPLM,
between the variation points and the usage model transitions is made through the
requirements. MPLM and MaTeLo tools support the product-based test derivation
approach (Fig. 3a).

4.8.1 Results

Before applying family-based prioritization, we encoded the Sferion™landing
symbology function models using our formalisms: the usage model has been flat-
tened to remove hierarchy (by hand in 1/2 day); the OVM model has been trans-
lated to TVL [9] (by hand in 1/2 day); and the mapping between features and be-
haviour has been encoded using a F'T'S, generated from the MaTeLo usage model,
the OVM model and the MPLM mapping model (in 1 day). We obtained a TVL
model with 25 features (256 possible products), a usage model with 25 states, 12
actions and 46 transitions, and a FTS with the same numbers of states, actions
and transitions.

As explained in section 3.2.1, engineers will probably have to run the algorithm
several times using different minimal and maximal probabilities intervals in order
to refine the selection. In our first attempt, we applied our trace selection algorithm
10 times with a maximal probability value of 1 and a minimal probability value
ranging from 107! to 107 '° and a maximal length of 50. The results of the execu-
tion are showed in table 2. The run 10 did not return any results due to the too
wide range of considered probabilities, giving too many possible paths in the usage
model. This is not a problem for our approach as a wide range of probabilities is
not very useful for prioritization. According to those results, the interval with the

18 Xavier Devroey et al.

Edit Navigate Search Reports Run TestSuite Window Help
@ v < v |2, Type Filter Text (? = any character, * = any String; Big~ %~/ Edition & Generation 2
& Project Explorer 22 G Test Suite 23 @) Test Casel % IR @ ~ = Ol Strategy ®=0
® B @ || Test Cases Length Unicity ID Strategy S Generate
4 & SferionAssist500 @ TestCasel 120 1 _
» [Chains @ TestCase2 “146 2 Name Create
& Profiles @ TestCase3 129 3 =
= [ZDefault Strategy
&1 Reports @) Test Cased 53 4 @
@ Test Cases @ TestCases 170 5
@1 tf_EngTestMode @ TestCase6 126 6 = -
&1 X00_bdg @ TestCase7 “72 7 E— BB
&1 X00_hdg @ TestCase8 ©138 8 + [l 5 AERO_UC5_MaTeLo_UM ~
& x00_mdg @ Test Case9 60 9 AERO_UCS MaTelo, UM \E
@ TestCaseld “154 10 % AERO UCS MaTelo UM [~
< 1 »
[Properties | 14 Log £3 . [£ Problems BEC-[RX BT O]
Workspace Log _—
Message Eligiin Date “ |~ Algorithm Selection
i Step 13 Step Name: Approach to landi com.alldtecmatelo... 10/10/14 0947 —
i Step 12 Step Name: com.alldtecmatelo... 10/10/14 0947 |Random -]
i Step 11 Step Name: Provide valid landi com.alldtecmatelo... 10/10/14 0947 T
i Step 10 Step Name: Trigger mark landi com.alldtecmatelo... 10/10/14 0947 ey
i Step 9 Step Name: comalldtecmatelo... 10/10/140947 —|| Test Case Number 10 S
i Step 8 Step Name: Provide landing pos com.alldtecmatelo... 10/10/14 0947 - =
~ | Maximum Steps 100 2
« i »
iid 236Mof392M [0

Fig. 8 MaTeLo Test-Case Generation View

most probable traces is between 1E~3 and 1E~2. We re-run the algorithm with the
minimal probabilities 5E~3 and 2.5E73: the execution with an interval between
[0; 5E73] returned no traces; the execution with an interval between [0;2,5E 3]
returned 2 traces (trace 1 and (trace 2)) with an average probability of 4,62E 3
and a length of 14. Those two traces are the most probable behaviours of the land-
ing symbology function and may be executed by all the products of the product
line.

In order to get a more concrete product, we generate longer traces in the usage
model by using the classical state-coverage criterion [37]. This criteria specifies
that, when executing a test set on the system, all the states of the system have
to be visited at least once. Generating a trace from the usage model using this
criteria gives us one trace visiting all states (trace 3). As for previously generated
traces, we execute it on the FTS to ensure that there exists at least one product
able to exercise this behaviour: this gives us a set of 64 products.

4.83.2 Test case generation with MaTeLo

All products can execute trace 1, only products with the Display real reference_
objects feature may execute trace 2. In those products, we selected a configura-
tion (i.e., a product) p based on the risk associate to features and the customers
satisfaction of previously commercialised products. With the help of MPLM, we
generate the test model for p from the usage model of the SPL, that contains
16 states and 28 transitions, from which four test cases are generated. Fig. 8
presents the result of the test-case generation process for this test model: there
are 10 test-cases with at most 72 steps (in the main tab of Fig. 8). Right tab
in Fig. 8 presents the parameters used for the test case generation: the default
strategy; Chains Selection corresponds to the DTMCs used for test case gener-
ation (MaTeLo allows definition of hierarchical states but not orthogonal states,
selected DTMCs corresponds to the main DTMC and sub-states DTMCs); the
Basic Profile contains probabilities for the different transitions as defined by the

Statistical Prioritization for Software Product Line Testing: An Experience Report 19

engineer; the random selection algorithm has been used to generate 10 test cases
with at most 100 steps (i.e., transitions in the DTMCs). This random selection
algorithm is the default strategy in MaTeLo. The tools allows for the definition
of custom strategies. These strategies involve the definition of the scope (portion
of the usage model to be covered) of the usage model, probability profile, and
alternative generation algorithms.

4.4 Discussion

We organise our discussion on the final results regarding feasibility for statisti-
cal prioritization SPL testing according to the criteria mentioned above: i) FTS
pruning; ii) modelling; and iii) scalability.

4.4.1 FTS pruning.

In both cases, it was possible to substantially prune the FTS models according
to frequent behaviours: from 28% to 85% reduction w.r.t. the number of states
(for Sferion™and Claroline) and up to 99,994% reduction w.r.t to transitions
(for Claroline). These important reduction factors are interesting in the sense that
it is possible to use statistical selection to deal with additional computationally
expensive coverage criteria that would not be directly applicable on the original
model (e.g. all-paths coverage on the claroline FTS [24]). Regarding the number
of products associated with the selected traces, the situation is less favourable. In
the claroline case, the least probable trace in run 1 is already associated to 260
products [22]. The main reason is that traces are small in size yielding short asso-
ciated feature expressions. Most Claroline users therefore seems to visit few pages
after the login one. Because the source Apache Log is anonymised, it is impossi-
ble to investigate further in this direction. The Symbology function exhibits more
complex behaviours as witnessed by traces’ sizes. For Sferion™, there are traces
that can be executed by all the products of the SPL. While from pure product
selection perspective this is a bad result, two additional observations need to be
made. First, the usage model was provided by experts to focus on the most rele-
vant behaviours: it seems they did perform correctly this task as most part of the
described behaviour concern all the products of the SPL. Second, there are oppor-
tunities to reuse test cases amongst products: these two traces can be used to derive
a small number of concrete test cases covering all configurations. This strategy can
be used to explore interaction problems [41]. Finally, feature models of our consid-
ered systems have very few constraints (e.g., Mark_landing_position = HOCAS,
Check_for_obstacles = OW S, etc.) amongst features, which clearly influence prod-
uct reduction ability. While such an open feature model is not surprising for a web
based system, this is more unusual for an embedded SPL.

4.4.2 Modelling

Using statistical prioritisation in both case studies involved some modelling: the
family based scenario allowed us to extract automatically the usage model using
a machine learning technique, while the SferionT™product one relied on SPL and
testing experts to explicitly provide the required usage model. However, what is

20 Xavier Devroey et al.

common to both scenarios is the necessity to provide variability models (in OVM
or TVL) and mapping from features to behaviours either by means of FTS or map-
ping matrices [47,49]. Both approaches try to keep requirements from test models
separated. Such a separation of concerns does not guarantee that these models
are correct (learning behaviours from anonymous logs entails approximations and
hand-made usage model are not free from biases either) but helps finding discrep-
ancies as they are generally provided by stakeholders having different perspectives
and skills. Keeping these models separated was also useful to integrate our ap-
proach with tools like MaTeLo that do not take into account natively features in
their usage models but provide additional facilities such as risk management or
customer satisfaction during test case generation. As discussed above, keeping the
usage model and the FTS separated may be detrimental to the analysis as some
invalid traces may be first extracted from the usage model and then removed.
Even if this was not the case on the considered SPLs, this may happen in more
constrained SPLs. One strategy could be to start with separated models and to
merge them in a feature-aware usage model once enough confidence is gained on
both models. This is left for future work.

The effort spent in modelling activities depends on the case study: for the
Claroline case study, the usage model has been automatically generated, the F'TS
has been semi-automatically generated and the variability model has been hand
crafted. Given the size of Claroline (442.399 LOC), the total effort spent in mod-
elling activities is deemed reasonable (around 7 days). The SferionT™case study
models a critical system, the modelling and testing efforts are important but have
to be supported by the company in order to guaranty a safe and sound product.
The additional effort required to derive the FTS from the Sferion™models is
small (around 2 days).

4.4.8 Scalability

Final results show that the scalability of our implementation mainly depends on
the [Prmin, Prmaz] interval and the shape of the usage model. We notice that
if the model is large (Claroline FTS) and/or the probability interval very large
computation time obviously increases and may even lead to no result at all (Run
10, table 2). In this case we encountered memory overflows. The all-paths algorithm
used in our implementation seems to perform well as long as the [Proin, Prmaas]
interval is not too wide, even on large usage model (like the Claroline case). Thus,
we rely upon the tester to choose a relatively small probability interval in order
to extract behaviours that results in the desired amount of traces and products.
So far, we explored these intervals manually to find tradeoffs. This exploration
can be automated if additional criteria (such as the maximum number of products
desired) are specified. Other state space exploration techniques will have to be
investigated to improve the algorithm (e.g., limit the length of the selected traces
is amongst the simplest, or use simulation techniques [5]). It should be noted
that, for more specialized explorations, such as finding the most probable path,
dedicated algorithms like the one proposed by Viterbi [60] may be used.

Statistical Prioritization for Software Product Line Testing: An Experience Report 21

4.5 Threats to Validity

Internal Validity The approach has only been applied on 2 systems. In order to
mitigate this risk, we chose two different kinds of systems: the first one is a web
application with a very few constraints and the other one is an embedded system
with a more constrained behaviour. Usage models have different sizes and come
from different sources: the first one has been generated from an Apache web log
and the second one has been designed by an expert.

Construct Validity To implement our approach, we choose to use a all-paths algo-
rithm with some restrictions (maximal length of the selected traces) in order to
avoid infinite executions. This choice may be not optimal but the all-paths explo-
ration ensure (in worst case) a complete exploration of the usage model. The input
models (usage model as a usage model, FT'S and TVL) are not the only possibili-
ties to represent usages, behaviour, and variability of the SPL. In our second SPL,
we showed how we translate other input models in order to apply our approach.

External Validity The main threat is the nature of the considered applications as it
influences the shape of the different models: average degree in the FTS and usage
model, number of features in the FD, number and nature of the constraints in the
FD... The first considered system [22] is a very particular kind of application: a web
application accessible through PHP pages in a web browser with a small number
of states and a huge number of transitions. This kind of application allows a very
flexible navigation from page to page either by clicking on the links in the different
pages or by a direct access with a link in a bookmark or an e-mail for instance.
In order to mitigate this risk, we applied our approach to the Sferion™landing
symbology function, an embedded system. The diversity of the considered systems
and models gives us a good confidence in the possibilities of generalisation of our
approach.

5 Related Work

To the best of our knowledge, there is no approach prioritizing behaviours statisti-
cally for testing SPLs in a family-based manner. There have been SPL test efforts
to sample products for testing such as t-wise approaches [15,16,43]. More recently
sampling was combined with prioritization thanks to the addition of weights on
feature models and the definition of multiple objectives [30, 32]. However, these
approaches do not consider SPL behaviour in their analyses.

Efforts to combine sampling techniques with modelling ones (e.g. [36]) exist.
These approaches are product-based, meaning that they may miss opportunities
to reuse tests amongst sampled products [46]. We believe that benefiting from
the recent advances in behavioural modelling provided by the model checking
community [3,4,12,13,26,35], sound MBT approaches for SPL can be derived and
interesting scenarios combining verification and testing can be devised [20].

To consider behaviour in an abstract way, a full-fledged MBT approach [57]
is required. Although behavioural MBT is well established for single-system test-
ing [56], a survey [42] shows insufficient support of SPL-based MBT. Metzger
and Pohl further emphasizes the need for inter-model consistency and minimizing

22 Xavier Devroey et al.

test redundancy across the lifecycle (domain and application engineering) [38]. We
believe that the FTS formalism, natively equipped with features as a first-class
concept, is pivotal to inter-model verification support and supports combination
of quality assurance techniques both at the domain and application engineering
levels as our integration between family-based and product-based statistical test
selection illustrates.

Our will is to apply ideas stemming from statistical testing [54] and adapt
them in an SPL context. For example, combining structural criteria with statis-
tical testing has been discussed by Gouraud et al. [29] and Thévenod-Fosse and
Waeselynck [55]. We do not make any assumption on the way the usage model
is obtained: via an operational profile [40] or by analysing the source code or the
specification [55]. However, a uniform distribution of probabilities over the usage
model would probably be less interesting. As noted by Witthaker [62], in such
case only the structure of traces would be considered and therefore basing their
selection on their probabilities would just be a means to limit their number in a
mainly random testing approach. In such cases, structural test generation has to
be employed [25].

We use MaTeLo [2] to generate test cases from a product model. Other tools like
JUMBL [45] would have qualified. Both are model-based statistical testing tools,
supporting the development of statistical usage models using Markov chains, the
analysis of models, and the generation of test cases [58]. However, none of them are
able to natively handle SPL models. We use the MaTeLo Product Line Manager
(MPLM) tool [47,49] to generate models for a product of the SPL, which are then
used to generate test cases.

6 Future Work

Recently, with the explosion of model size (and particularly in a SPL context),
the model checking community has explored techniques to reduce the state space
of the models to check [6]. Our approach is used to prioritize products to test in a
SPL using a usage model of this SPL. The FTS’ built at step 2 represents a subset
of the behaviour of the SPL (i.e., the complete FTS) able to execute the traces
selected in the usage model. We believe that this FTS’ model may be used during
model checking [17] to verify in priority a subset of the behaviour of a SPL. This
possibility has to be explored and discussed regarding the loss of completeness and
its impact on the verification for the complete FTS.

The presented prioritization approach has been implemented in our Variability
Intensive Behavioural teSting (VIBeS) framework [21]. There are several possible
improvements for this current implementation: the algorithm, currently imple-
mented as a all-paths, may be improved in several ways (e.g., using the algorithm
proposed by Viterbi [60] or using algorithms from the model checking commu-
nity [5]) ; the trace selection algorithm may be combined with other coverage
criteria to improve the selection ability in our approach (e.g., one may be inter-
ested to select highly probable behaviour but also to cover all states in the usage
model); keeping usage model and FTS separated allows a better integration with
tools like MaTeLo but requires to execute selected traces on the FTS, one way to
reduce the computation cost could be to merge the usage model and the FTS.

Statistical Prioritization for Software Product Line Testing: An Experience Report 23

7 Conclusion

In this paper, we reported on our experiences in applying both family-based and
product-based statistical testing for SPLs. We proposed family-based prioritisa-
tion in our previous work to extract configurations of interest according to the
probability of their execution traces gathered in a discrete-time Markov chain rep-
resenting their usages an mined from a log [22]. We thus select a subset of the
full SPL behaviour given as Featured Transition Systems (FTS). This allows us to
construct a new F'TS representing only the executions of relevant products. This
pruned FTS can be analysed all at once to enable test reuse amongst products to
scale during testing activities. Product-based statistical testing requires the testers
to select a product interest before the usage model is pruned, leaving only execu-
tions associated to it. The approach followed by ALLATEC [47-49] is also to rely
on the experts to provide the usage model.

Though these approaches may seem antagonistic, family-based prioritisation
can gracefully complement product-based one by suggesting configurations of in-
terest. This can help testers finding opportunities for test reuse since we demon-
strated that a given behaviour can in fact be executed by many configurations.
We also noticed the influence of variability models in the discrimination power of
prioritisation and reported on ways to cope with such a situations either by us-
ing additional coverage criteria [23,24] and ultimately relying on tester expertise.
Indeed, as for sampling configuration from feature models, statistical testing of
SPLs is constrained by multiple objectives [31].

Acknowledgements We would like to Jean-Roch Meurisse and Didier Belhomme from the
University of Namur for providing the Webcampus Apache access log.

References

1. Airbus Defence & Space - Sferion: http://www.defenceandsecurity-airbusds.com/fr/
sferion

2. ALLATEC - MaTeLo: http://all4tec.net/index.php/en/model-based-testing/
20-markov-test-logic-matelo

3. Asirelli, P., ter Beek, M., Gnesi, S., Fantechi, A.: Formal description of variability in
product families. In: Software Product Line Conference (SPLC), 2011 15th International,
pp. 130-139 (2011). DOI 10.1109/SPLC.2011.34

4. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Design and validation
of variability in product lines. In: Proceedings of the 2Nd International Workshop on
Product Line Approaches in Software Engineering, PLEASE ’11, pp. 25-30. ACM, New
York, NY, USA (2011). DOI 10.1145/1985484.1985492. URL http://doi.acm.org/10.
1145/1985484.1985492

5. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)

6. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2), 142-170 (1992). DOI 10.1016/
0890-5401(92)90017-A. URL http://dx.doi.org/10.1016/0890-5401(92)90017-A

7. Cichos, H., Oster, S., Lochau, M., Schiirr, A.: Model-based Coverage-driven Test Suite
Generation for Software Product Lines. In: Proceedings of the 14th International Con-
ference on Model Driven Engineering Languages and Systems, MODELS’11, pp. 425-439.
Springer-Verlag, Berlin, Heidelberg (2011). URL http://dl.acm.org/citation.cfm?id=
2050655.2050698

8. Claroline: http://www.claroline.net/

9. Classen, A., Boucher, Q., Heymans, P.: A Text-based Approach to Feature Modelling;:
Syntax and Semantics of {TVL}. Science of Computer Programming 76(12), 1130-1143

24

Xavier Devroey et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

(2011). DOI 10.1016/j.scico.2010.10.005. URL http://dx.doi.org/10.1016/j.scico.
2010.10.005http://linkinghub.elsevier.com/retrieve/pii/S0167642310001899
Classen, A., Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A., Raskin, J.F.: Featured
transition systems: Foundations for verifying variability-intensive systems and their appli-
cation to 1t] model checking. Software Engineering, IEEE Transactions on 39(8), 1069—
1089 (2013). DOI 10.1109/TSE.2012.86

Classen, A., Heymans, P., Schobbens, P.Y.: What’s in a Feature: A Requirements En-
gineering Perspective. In: J.L. Fiadeiro, P. Inverardi (eds.) Proceedings of the 11th In-
ternational Conference on Fundamental Approaches to Software Engineering (FASE’08),
Held as Part of the Joint European Conferences on Theory and Practice of Software
(ETAPS’08), LNCS, vol. 4961, pp. 16-30. Springer (2008). URL http://www.cs.le.ac.
uk/events/fase2008/

Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Symbolic model checking of
software product lines. In: Proceedings of the 33rd International Conference on Soft-
ware Engineering, ICSE ’11, pp. 321-330. ACM, New York, NY, USA (2011). DOI
10.1145/1985793.1985838. URL http://doi.acm.org/10.1145/1985793.1985838
Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model checking lots
of systems: Efficient verification of temporal properties in software product lines. In:
Proceedings of the 32Nd ACM/IEEE International Conference on Software Engineering
- Volume 1, ICSE ’10, pp. 335-344. ACM, New York, NY, USA (2010). DOI 10.1145/
1806799.1806850. URL http://doi.acm.org/10.1145/1806799.1806850

Cohen, M., Dwyer, M., Shi, J.: Constructing Interaction Test Suites for Highly-
Configurable Systems in the Presence of Constraints: A Greedy Approach. IEEE Trans-
actions on Software Engineering 34(5), 633-650 (2008). DOI 10.1109/TSE.2008.50. URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4564473

Cohen, M.B., Dwyer, M.B., Shi, J.: Coverage and adequacy in software product line testing.
In: Proceedings of the ISSTA 2006 Workshop on Role of Software Architecture for Testing
and Analysis, ROSATEA °06, pp. 53-63. ACM, New York, NY, USA (2006). DOI 10.
1145/1147249.1147257. URL http://doi.acm.org/10.1145/1147249.1147257

Cohen, M.B., Dwyer, M.B., Shi, J.: Interaction testing of highly-configurable systems
in the presence of constraints. In: Proceedings of the 2007 International Symposium on
Software Testing and Analysis, ISSTA *07, pp. 129-139. ACM, New York, NY, USA (2007).
DOI 10.1145/1273463.1273482. URL http://doi.acm.org/10.1145/1273463.1273482
Cordy, M., Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Provelines: A prod-
uct line of verifiers for software product lines. In: Proceedings of the 17th Interna-
tional Software Product Line Conference Co-located Workshops, SPLC 13 Workshops,
pp. 141-146. ACM, New York, NY, USA (2013). DOI 10.1145/2499777.2499781. URL
http://doi.acm.org/10.1145/2499777.2499781

Cordy, M., Heymans, P., Schobbens, P.Y., Sharifloo, A.M., Ghezzi, C., Legay, A.: Verifi-
cation for reliable product lines. arXiv:1311.1343 (2013)

Czarnecki, K., Wasowski, A.: Feature Diagrams and Logics: There and Back Again. In:
SPLC 07, pp. 23-34. IEEE (2007). DOI 10.1109/SPLINE.2007.24

Devroey, X., Cordy, M., Perrouin, G., Kang, E.Y., Schobbens, P.Y., Heymans, P., Legay,
A., Baudry, B.: A vision for behavioural model-driven validation of software product
lines. In: T. Margaria, B. Steffen (eds.) Leveraging Applications of Formal Methods,
Verification and Validation. Technologies for Mastering Change, Lecture Notes in Com-
puter Science, vol. 7609, pp. 208-222. Springer Berlin Heidelberg (2012). DOI 10.1007/
978-3-642-34026-0_16. URL http://dx.doi.org/10.1007/978-3-642-34026-0_16
Devroey, X., Perrouin, G.: Variability Intensive system Behavioural teSting framework
(VIBeS) (2014). URL https://projects.info.unamur.be/vibes/

Devroey, X., Perrouin, G., Cordy, M., Schobbens, P., Legay, A., Heymans, P.: Towards
statistical prioritization for software product lines testing. In: P. Collet, A. Wasowski,
T. Weyer (eds.) The Eighth International Workshop on Variability Modelling of Software-
intensive Systems, VaMoS ’14, Sophia Antipolis, France, January 22-24, 2014, p. 10. ACM
(2014). DOI 10.1145/2556624.2556635. URL http://doi.acm.org/10.1145/2556624.
2556635

Devroey, X., Perrouin, G., Legay, A., Cordy, M., Schobbens, P., Heymans, P.: Coverage
criteria for behavioural testing of software product lines. In: T. Margaria, B. Steffen (eds.)
Leveraging Applications of Formal Methods, Verification and Validation. Technologies for
Mastering Change - 6th International Symposium, ISoLA 2014, Imperial, Corfu, Greece,
October 8-11, 2014, Proceedings, Part I, Lecture Notes in Computer Science, vol. 8802,

Statistical Prioritization for Software Product Line Testing: An Experience Report 25

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

pp. 336-350. Springer (2014). DOI 10.1007/978-3-662-45234-9_24. URL http://dx.doi.
org/10.1007/978-3-662-45234-9_24

Devroey, X., Perrouin, G., Schobbens, P.: Abstract test case generation for behavioural
testing of software product lines. In: S. Gnesi, A. Fantechi, M.H. ter Beek, G. Botter-
weck, M. Becker (eds.) 18th International Software Product Lines Conference - Compan-
ion Volume for Workshop, Tools and Demo papers, SPLC ’14, Florence, Italy, Septem-
ber 15-19, 2014, pp. 86-93. ACM (2014). DOI 10.1145/2647908.2655971. URL http:
//doi.acm.org/10.1145/2647908.2655971

Feliachi, A., Le Guen, H.: Generating transition probabilities for automatic model-based
test generation. In: Software Testing, Verification and Validation (ICST), 2010 Third
International Conference on, pp. 99-102 (2010). DOI 10.1109/ICST.2010.26

Fischbein, D., Uchitel, S., Braberman, V.: A foundation for behavioural conformance in
software product line architectures. In: Proceedings of the ISSTA 2006 Workshop on Role
of Software Architecture for Testing and Analysis, ROSATEA ’06, pp. 39-48. ACM, New
York, NY, USA (2006). DOI 10.1145/1147249.1147254. URL http://doi.acm.org/10.
1145/1147249.1147254

Garca-Teodoro, P., Daz-Verdejo, J., Maci-Fernndez, G., Vzquez, E.: Anomaly-based net-
work intrusion detection: Techniques, systems and challenges. Computers & Secu-
rity 28(12), 18 — 28 (2009). DOI http://dx.doi.org/10.1016/j.cose.2008.08.003. URL
http://www.sciencedirect.com/science/article/pii/S0167404808000692

Ghezzi, C., Pezze, M., Sama, M., Tamburrelli, G.: Mining Behavior Models from User-
Intensive Web Applications Categories and Subject Descriptors. In: 36th International
Conference on Software Engineering, ICSE ’14. ACM, Hyderabad, India (2014)
Gouraud, S.D., Denise, A., Gaudel, M.C., Marre, B.: A new way of automating statistical
testing methods. In: Automated Software Engineering, 2001. (ASE 2001). Proceedings.
16th Annual International Conference on, pp. 5-12 (2001). DOI 10.1109/ASE.2001.989785
Henard, C., Papadakis, M., Perrouin, G., Klein, J., Heymans, P., Le Traon, Y.: Bypassing
the Combinatorial Explosion: Using Similarity to Generate and Prioritize T-Wise Test
Configurations for Software Product Lines. IEEE Transactions on Software Engineering
40(7), 650-670 (2014). DOI 10.1109/TSE.2014.2327020. URL http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=6823132

Henard, C., Papadakis, M., Perrouin, G., Klein, J., Traon, Y.L.: Multi-objective Test
Generation for Software Product Lines. In: Proceedings of the 17th International Software
Product Line Conference, SPLC ’13, pp. 62-71. ACM, New York, NY, USA (2013). DOI
10.1145/2491627.2491635. URL http://doi.acm.org/10.1145/2491627.2491635
Johansen, M., Haugen, O., Fleurey, F., Eldegard, A., Syversen, T.: Generating bet-
ter partial covering arrays by modeling weights on sub-product lines. In: R. France,
J. Kazmeier, R. Breu, C. Atkinson (eds.) Model Driven Engineering Languages and Sys-
tems, Lecture Notes in Computer Science, vol. 7590, pp. 269-284. Springer Berlin Hei-
delberg (2012). DOI 10.1007/978-3-642-33666-9-18. URL http://dx.doi.org/10.1007/
978-3-642-33666-9_18

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Spencer Peterson, A.: Feature-Oriented
domain analysis (FODA) feasibility study. Tech. rep., Soft. Eng. Inst., Carnegie Mellon
Univ. (1990)

Kim, C., Khurshid, S., Batory, D.: Shared execution for efficiently testing product lines.
In: Software Reliability Engineering (ISSRE), 2012 IEEE 23rd International Symposium
on, pp. 221-230 (2012). DOI 10.1109/ISSRE.2012.23

Lauenroth, K., Pohl, K., Toehning, S.: Model checking of domain artifacts in product
line engineering. In: Automated Software Engineering, 2009. ASE ’09. 24th IEEE/ACM
International Conference on, pp. 269-280 (2009). DOI 10.1109/ASE.2009.16

Lochau, M., Oster, S., Goltz, U., Schiirr, A.: Model-based pairwise testing for feature
interaction coverage in software product line engineering. Software Quality Journal 20(3-
4), 567-604 (2012). DOI 10.1007/511219-011-9165-4

Mathur, A.P.: Foundations of software testing. Pearson Education (2008)

Metzger, A., Pohl, K.: Software product line engineering and variability management:
Achievements and challenges. In: Proceedings of the on Future of Software Engineering,
FOSE 2014, pp. 70-84. ACM, New York, NY, USA (2014). DOI 10.1145/2593882.2593888.
URL http://doi.acm.org/10.1145/2593882.2593888

Michel, R., Classen, A., Hubaux, A., Boucher, Q.: A formal semantics for feature cardi-
nalities in feature diagrams. In: Proceedings of the 5th Workshop on Variability Modeling
of Software-Intensive Systems, VaMoS ’11, pp. 82-89. ACM, New York, NY, USA (2011).
DOI 10.1145/1944892.1944902. URL http://doi.acm.org/10.1145/1944892.1944902

26

Xavier Devroey et al.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

Musa, J.D., Fuoco, G., Irving, N., Kropfl, D., Juhlin, B.: The operational profile. NATO
ASI series F Comp. and Syst. Sc. 154, 333-344 (1996)

Nguyen, H.V., Kastner, C., Nguyen, T.N.: Exploring variability-aware execution for testing
plugin-based web applications. In: P. Jalote, L.C. Briand, A. van der Hoek (eds.) 36th
International Conference on Software Engineering, ICSE ’14, Hyderabad, India - May
31 - June 07, 2014, pp. 907-918. ACM (2014). DOI 10.1145/2568225.2568300. URL
http://doi.acm.org/10.1145/2568225.2568300

Oster, S., Wobbeke, A., Engels, G., Schiirr, A.: Model-based software product lines testing
survey. In: Model-Based Testing for Embedded Systems, pp. 339-382. CRC Press (2011)
Perrouin, G., Oster, S., Sen, S., Klein, J., Baudry, B., le Traon, Y.: Pairwise testing for
software product lines: comparison of two approaches. Software Quality Journal 20(3-
4), 605-643 (2012). DOI 10.1007/s11219-011-9160-9. URL http://dx.doi.org/10.1007/
s11219-011-9160-9

Pohl, K., Béckle, G., Van Der Linden, F.: Software product line engineering: foundations,
principles, and techniques. Springer-Verlag New York Inc (2005)

Prowell, S.J.: JUMBL: a tool for model-based statistical testing. In: System Sciences, 2003.
Proceedings of the 36th Annual Hawaii International Conference on, pp. 9 pp.— (2003).
DOI 10.1109/HICSS.2003.1174916

von Rhein, A., Apel, S., Késtner, C., Thiim, T., Schaefer, I.. The PLA model: On
the combination of product-line analyses. In: Proceedings of the Seventh Interna-
tional Workshop on Variability Modelling of Software-intensive Systems, VaMoS ’13, pp.
14:1-14:8. ACM, New York, NY, USA (2013). DOI 10.1145/2430502.2430522. URL
http://doi.acm.org/10.1145/2430502.2430522

Samih, H., Acher, M., Bogusch, R., Le Guen, H., Baudry, B.: Deriving Usage Model
Variants for Model-based Testing: An Industrial Case Study. In: IEEE (ed.) 2014 19th
International Conference on Engineering of Complex Computer Systems (ICECCS 2014).
Tianjin, Chine (2014). URL http://hal.inria.fr/hal-01002099

Samih, H., Bogusch, R.: MPLM - MaTeLo Product Line Manager. In: Proceedings of
the 18th International Software Product Line Conference: Companion Volume for Work-
shops, Demonstrations and Tools - Volume 2, SPLC ’14, pp. 138-142. ACM, New York,
NY, USA (2014). DOI 10.1145/2647908.2655980. URL http://doi.acm.org/10.1145/
2647908.2655980

Samih, H., Le Guen, H., Bogusch, R., Acher, M., Baudry, B.: An Approach to Derive Usage
Models Variants for Model-based Testing. In: The 26th IFIP International Conference on
Testing Software and Systems (2014). Springer, Madrid, Espagne (2014). URL http:
//hal.inria.fr/hal-01025124

Sampath, S., Bryce, R.C., Viswanath, G., Kandimalla, V., Koru, a.G.: Prioritizing User-
Session-Based Test Cases for Web Applications Testing. In: Software Testing, Ver-
ification, and Validation, 2008 1st International Conference on, pp. 141-150. IEEE
(2008). DOI 10.1109/ICST.2008.42. URL http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper .htm?arnumber=4539541

Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Generic semantics of fea-
ture diagrams. Computer Networks 51(2), 456 — 479 (2007). DOI http://dx.doi.org/
10.1016/j.comnet.2006.08.008. URL http://www.sciencedirect.com/science/article/
pii/S1389128606002179. Feature Interaction

Scrapy: http://scrapy.org/

Segura, S., Sanchez, A.B., Ruiz-Cortés, A.: Automated Variability Analysis and Test-
ing of an E-commerce Site.: An Experience Report. In: Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering, ASE 14, pp.
139-150. ACM, New York, NY, USA (2014). DOI 10.1145/2642937.2642939. URL
http://doi.acm.org/10.1145/2642937.2642939

Sprenkle, S.E., Pollock, L.L., Simko, L.M.: Configuring effective navigation models and
abstract test cases for web applications by analysing user behaviour. Software Testing,
Verification and Reliability 23(6), 439-464 (2013). DOI 10.1002/stvr.1496. URL http:
//dx.doi.org/10.1002/stvr.1496

Thévenod-Fosse, P., Waeselynck, H.: An investigation of statistical software testing. Softw.
Test., Verif. Reliab. 1(2), 5-25 (1991)

Tretmans, J.: Model based testing with labelled transition systems. In: R. Hierons,
J. Bowen, M. Harman (eds.) Formal Methods and Testing, Lecture Notes in Com-
puter Science, vol. 4949, pp. 1-38. Springer Berlin Heidelberg (2008). DOI 10.1007/
978-3-540-78917-8_1. URL http://dx.doi.org/10.1007/978-3-540-78917-8_1

Statistical Prioritization for Software Product Line Testing: An Experience Report 27

57.

58.

59.

60.

61.

62.

Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Morgan
Kaufmann (2007)

Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing approaches
(April 2011), 297-312 (2012). DOI 10.1002/stvr

Verwer, S., Eyraud, R., De La Higuera, C.: PAutomaC: a probabilistic automata and
hidden Markov models learning competition. Machine Learning pp. 1-26 (2013). DOI
10.1007/s10994-013-5409-9. URL https://hal.archives-ouvertes.fr/hal-00873981
Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum de-
coding algorithm. Information Theory, IEEE Transactions on 13(2), 260-269 (1967)
WeiB leder, S., Sokenou, D., Schlingloff, B.: Reusing State Machines for Automatic Test
Generation in Product Lines. In: 1st Workshop on Model-based Testing in Practice
(MoTiP 2008), p. 19. Citeseer, Berlin, Germany (2008). URL http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.169.5699\&rep=repl\&type=pdf\#page=21
Whittaker, J., Thomason Michael, G.: A Markov chain model for statistical software
testing. Software Engineering, IEEE Transactions on 20(10), 812-824 (1994). DOI
10.1109/32.328991

