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Abstract

Mutation analysis is a popular technique for assessing the strength of test
suites. It relies on the mutation score, which indicates their fault-revealing po-
tential. Yet, there are mutants whose behaviour is equivalent to the original
system, wasting analysis resources and preventing the satisfaction of a 100%
mutation score. For finite behavioural models, the Equivalent Mutant Prob-
lem (EMP) can be transformed to the language equivalence problem of non-
deterministic finite automata for which many solutions exist. However, these
solutions are quite expensive, making computation unbearable when used for
tackling the EMP. In this paper, we report on our assessment of a state-of-the-
art exact language equivalence tool and two heuristics we proposed. We used
12 models, composed of (up to) 15,000 states, and 4,710 mutants. We intro-
duce a random and a mutation-biased simulation heuristics, used as baselines
for comparison. Our results show that the exact approach is often more than
ten times faster in the weak mutation scenario. For strong mutation, our biased
simulations can be up to 1,000 times faster for models larger than 300 states,
while limiting the error of misclassifying non-equivalent mutants as equivalent
to 8% on average. We therefore conclude that the approaches can be combined
for improved efficiency.
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random simulations

1. Introduction

Mutation analysis is a technique that injects artificial defects, called muta-
tions, into the code under test, yielding mutants. Mutants are typically used to
evaluate the effectiveness of test suites [2, 3, 4] and to support test generation
[5, 6, 3]. The technique is quite popular in research due to the ability of mutants5

to simulate the behaviour of real faults [2, 7]. There is also evidence showing
that tests designed to detect mutants reveal significantly more faults than other
test criteria [8, 3, 9].

These characteristics of mutation inspired researchers to apply the method
on artefacts other than code and particularly models [3, 10, 4]. The usual10

advantages of model-based testing technique is the ability to identify defects
related to missing functionality or misinterpreted specifications [11] where code-
based testing fails [12, 13]. The method has been shown to be practical and can
complement existing approaches. For instance, Aichernig et al. [14] report that
model mutants lead to tests that are able to reveal implementation faults that15

were found neither by manual tests, nor by the actual operation, of an industrial
system.

Despite its potential, mutation analysis faces a number of challenges that
currently prevent wider adoption [15, 4]. One of them is the Equivalent Mutants
Problem (EMP). This problem concerns the identification of the mutants whose20

behaviour is identical to the original artefact (code or model). Such mutants
cannot be distinguished by any test, a situation that raises two issues: (i) they
hamper the use of the criterion as a stopping rule by skewing the mutation score
measurement (the number of detected mutants divided by the total number
of mutants), and (ii) they do not bring any new value to the test generation25

techniques as they attempt to kill mutants that have no chance to be killed.
In this paper, we focus on the model-based formulation of the EMP, which

can be expressed in terms of language equivalence. Language equivalence has
been studied by the formal verification community who determined its PSPACE
complexity [16] and derived exact equivalence checking algorithms [17, 18].30

While potentially helpful, such tools have, to our knowledge, never been used
to tackle the EMP. This is the main contribution and novelty of this paper.

In summary, the contributions of this paper are:

• The design of two simulation algorithms relying on random simulations
(RS) and biased simulations (BS) that aim at covering infected states35

[19] (i.e., exploiting syntactical differences between original and mutant
models) to improve the chances to distinguish non-equivalent mutants;

• A configurable implementation of our simulations (available at https:

//projects.info.unamur.be/vibes/) that benefits from the fact that
simulation can be easily distributed among processor cores;40
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• The definition of an experimental setup to apply an automata language
equivalence tool (ALE) [17] to the EMP. We employed twelve models of
varying origins and sizes, from 9 to 15,000 states. We produced 4,710
mutants using seven operators, and considered four mutation orders (one,
two, five, ten), according to strong and weak mutation scenarios.45

• The assessment of the ALE tool with respect to our baseline algorithms.
We measured the speed and accuracy of equivalence detection. The ALE
tool is particularly efficient for weak mutation by being, on average, ten
times faster than simulations. However, biased simulations perform well
for strong mutation on models larger than 300 states: they can be 1,00050

times faster. The ratio of tagging non-equivalent mutants as equivalent
is 8% for biased simulations and 15% for random ones. To ease re-
producibility, all our models and experimental results are available at:
https://projects.info.unamur.be/vibes/mutants-equiv.html.

This paper extends our previous work [1] on the major following points: the55

empirical analysis is now performed on 12 models of size up to 15,000 states
and 4,710 mutants (instead of 3 models and 1,170 mutants); it adds a new re-
search question to analyse the impact of strong and weak mutation on automata
language equivalence performance; finally, we provide statistical significance ev-
idence.60

The remainder of the paper is organised as follows. Section 2 presents back-
ground information on the models used and language equivalence, while Section
3 details the design of our simulation heuristics and the ALE approach we used.
Section 4 describes our empirical assessment and provides some lessons learned.
Section 5 covers relevant literature. Finally Section 6, wraps up the paper.65

2. Background

In this section we introduce the main formalism, namely, finite transition
systems, and the relevance of language equivalence for equivalent mutant detec-
tion, that we use throught the paper.

2.1. Transition Systems & Finite Automata70

We consider transition systems as a powerful abstract formalism to model
system behaviour. We addapt and follow the definition of Baier and Katoen’s
[20], where atomic propositions have been omitted (we do not consider state
internals). Thus, we consider:

Definition 1 (Transition System (TS)). A TS is a tuple (S,Act, trans, i)75

where S is a set of states, Act is a set of actions, trans ⊆ S×Act×S is a non-
deterministic transition relation (with (s1, α, s2) ∈ trans, denoted s1

α−→ s2),
and i ∈ S is the initial state.
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To deal with test generation activities, where finite behaviours are sought,
we first require the sets S and Act to be finite. To mimic weak and strong80

mutation scenarios (see Section 3.1), we impose the requirement of stoping the
test execution at specific states. These requirements make the non-deterministic
finite automata (NFA) sematics be equivalent to our executions. This key ob-
servation enables the comparison of our simulations with the ALE tools. In
the remainder of this paper, unless otherwise stated, we refer to TSs with such85

restrictions so that the term can be used interchangeably with NFAs2.

Definition 2 (Trace). Let ts = (S, Act, trans, i) be a TS, let t = (α1, . . . , αn)
where α1, . . . , αn ∈ Act be a finite sequence of actions. The trace t is valid iff:

ts
(α1,...,αn)

=⇒

where ts
(α1,...,αn)

=⇒ is equivalent to ∃s ∈ S : i
(α1,...,αn)

=⇒ s, meaning that there
exists a non-empty sequence of transitions labelled (α1, . . . , αn) from i to a state
s of the TS.

2.2. Equivalent Mutant Problem90

In this paper, we focus on the model-based instance of the Equivalent Mu-
tant Problem (EMP). The equivalent mutant problem is a well-known issue in
mutation analysis [4, 19, 15]. It stems from the fact that two program variants
may exhibit the same behaviour and therefore cannot be distinguished by test
cases. This is particularly problematic with respect to both generation and as-95

sessment of test suites, since in the former case resources are spent on trying
to kill non-killable mutants and in the later case skewing the assessment score
(100% of killed mutants is impossible to reach in case of equivalence). Mutant
equivalence can take two forms [15]: (a) equivalence between mutants and the
original system; (b) equivalence between two mutants (not with the original100

system). Mutants of case (a) are called equivalent while mutants of case (b)
are called duplicate. In the context of this paper, we focus on mutants that are
behaviourally equivalent to the original system, i.e., mutants of case (a).

2.3. Automata Language Equivalence & EMP

In our context, the EMP corresponds to a classic problem in automata the-
ory: Automata Language Equivalence (ALE). The accepted language of an au-
tomaton is formed by all the sequences of actions (words) that can be accepted
i.e., starting in the initial state and ending in a final state. Therefore, if a mu-
tant m accepts the same language as the original o (language-equivalent), then
there is no trace t that can distinguish the mutant from the original:

∀t, t ∈ L(o)⇔ t ∈ L(m)

2Our MBT framework, VIBeS, uses TSs as its underlying formalism so we stick to the term
“TS” for consistency.
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There are various forms of relations that can be defined between two au-105

tomata in order to determine whether they are language-equivalent. Among
them, we can cite bisimulations or trace equivalence [20]. In the recent years,
the verification community developed dedicated algorithms, such as bisimula-
tions up to congruence [17] or antichains [18], to address language equivalence.
In model-based mutation testing, Aichernig et al. investigated language inclu-110

sion (but not equivalence) using refinement checking [21] in order to generate
mutant-killing test cases.

Although the language equivalence and inclusion problems can be tack-
led with many techniques, these may face exponential blow-up since they are
PSPACE complete [16]. Thus, ending up with a discouraging worst-case com-115

plexity. To this end, various heuristics have been proposed, aiming at reducing
the average complexity faced in practice. Here, we try to determine the ap-
plicability of an exact language equivalence algorithm, in particular the one
proposed by Bonchi and Pous [17], at addressing the EMP. This algorithm has
been selected due to its availability, reported performance and its ability to120

handle non-determinism that mutations may incur. In the next section, we also
present two baseline algorithms that run generated traces to distinguish original
and mutants’ behaviours.

3. Mutant Equivalence Analysis

3.1. Strong and Weak Mutation125

Elizabeth Jöbstl [22] discussed the conditions, identified by DeMillo and Of-
futt [23], that must be fulfilled to kill a mutant: (i) “the necessity condition
says that the state of the mutated program after some execution of the mutated
statement must be incorrect with respect to the original program. This implies
that the mutated statement must be reached. This is necessary, but not suffi-130

cient”; (ii) “the sufficiency condition says that the final state of the mutant must
differ from the final state of the original program, i.e., the necessary incorrect
intermediate state must propagate to an incorrect final state.” Satisfying the
necessity condition alone is referred to as weak mutation [24], while satisfying
both is strong mutation.135

At the model level, our simulations detect an incorrect state if a trace that is
valid with respect to the original TS is invalid on the mutant TS, and vice-versa.
Indeed, when executed, a trace induces one or more runs (alternating sequences
of states and actions), depending on the presence of non-determinism. If such a
run contains only a prefix of the trace in its sequence (i.e, the run is incomplete),140

it is because of the presence of an incorrect state preventing the remaining
actions to be fired. If all runs are complete, the original and the mutant are
assumed equivalent for this trace. Necessity and sufficiency conditions affect
the final states of these runs. For weak mutation, these states can map to any
state of the TS. For strong mutation, we need to account for the fact that TSs145

have no final states. A very frequent example is the modelling of user sessions
in which, after a legitimate sequence of actions, the system returns to its initial
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state to welcome a new user. This occurs in two thirds of the systems we analyse
in Section 4.1.1. This is why we model strong mutation by generating traces
whose runs start and end in the same initial state, assimilated to a final state.150

The ALE approach uses automata that have explicit initial and final states.
For weak mutation, we generate automata in which all states are final, and for
strong mutation the initial state is the only final state.

3.2. Automata Language Equivalence (ALE)

For comparison, we selected the ALE approach developed by Bonchi and155

Pous [17]. It is an extension of the Hopcroft-Karp algorithm to non-deterministic
TSs: they introduce a new bisimulation relation, called up to congruence, that
requires to explore less states compared to the original algorithm; and performs
determinisation on-the-fly to avoid building the complete deterministic finite
TS. This approach is particularly relevant for the EMP: (i) non-determinism160

may be introduced locally by mutations (our original models are deterministic),
thereby limiting determinisation scope; and (ii) between 0% and 15.5% of our
mutants are non-deterministic (see Section 4.1.1).

3.3. Random and Biased Simulation

Our randomized approach to equivalence analysis is straightforward: we165

generate random traces from the original model and run them on the mutant
model and reciprocally. If a trace fails to execute on one of the models, it
serves as a counterexample and disproves equivalence. If all runs succeed, then
the mutant is considered probably equivalent and testers have to decide if they
want to perform more simulations or switch to an exact method. Algorithm 1170

presents our generic simulation approach: N traces are selected (resp.) from
the original model (line 1) and the mutant model (line 7), and executed (resp.)
on the mutant model (line 3) and the original model (line 9). In case of non
deterministic behaviour, all the possible paths (i.e., runs) are considered for the
execution of the trace. If one execution fails, the algorithm stops and returns175

a positive trace such as (o
t

=⇒) ∧ ¬(m
t

=⇒) (line 4) or a negative trace such as

¬(o
t

=⇒) ∧ (m
t

=⇒) (line 10) .
This generic simulation algorithm is instantiated through two strategies for

trace generation (lines 1 and 7): Random Simulation (RS) and Biased Simula-
tion (BS). The parameter N is computed using the Chernoff-Hoeffding bound180

as explained hereafter.

3.3.1. Random Simulation (RS)

Random simulation (RS) assumes a uniform distribution of traces over the
model, that is, such traces are selected randomly (select call on lines 1 and 7 in
Algorithm 1) by accumulating the actions αi triggered by a random walk of a185

given length ≤ k in the TS. For weak mutation (WM RS), the only constraint
is to start the random walk from the initial state i. Strong mutation (SM RS)
requires a random walk starting from and ending in i: after few tries, this
method (i.e., using a random walk until the initial state i is reached) showed
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Algorithm 1 Generic simulation

Require: o : TS {the original system}
m : TS {the mutant to compare to o}
N {total number of traces to generate}
k {trace length}

Ensure: returns a positive or negative trace differentiatingm from o or a special
value (none) if m is equivalent to o.

1: traceset← select(o,
N

2
, k)

2: for all t ∈ tracetset do
3: if ¬(m

t
=⇒) then

4: return pos(t) {if the mutant TS fails to execute t, returns a positive
trace t}

5: end if
6: end for

7: traceset← select(m,
N

2
, k)

8: for all t ∈ traceset do
9: if ¬(o

t
=⇒) then

10: return neg(t) {if the original TS fails to execute t, returns a negative
trace t}

11: end if
12: end for
13: return none

very poor results on our largest models (we set a timeout of one hour for one190

equivalence detection) and is therefore not further discussed in this paper.

3.3.2. Biased Simulation (BS)

The biased simulation (BS) approach exploits the basic characteristics of
mutation testing: mutations are localised and they create (most of the time)
behavioural differences. It assumes that those differences are detected by a trace195

t which, when executed on the original TS o or on its mutant m, goes through
one of the states affected by the mutation. For instance, the transition missing
(TMI in Table 2) operator produces a mutant by removing a transition a

αi−→ b
from the original TS. The BS approach generates traces in o and m, such that

their executions m
t

=⇒ or o
t

=⇒ cover a or b. Such states, called infected states,200

have been shown to help identifying equivalent mutants at the code level [25, 26]
and to speed up mutation analysis at the model level [27]. This motivates us to
adopt this strategy in our biased simulation.

In practice, the set of infected states Sinfect is computed by checking syntactic
differences between the original and mutant TSs. It will include: (i) connected205

states (i.e, states accessible from the initial state) from one model which are
not present in the other, and (ii) states with differences in their input/output
transitions: in number of transitions or in action names, considering any pair of
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states < so, sm > where so is a state in the original TS, sm a state in the mutant
TS, such that their names are identical. An alternative is to instrument the210

mutant generator to keep track of the list of infected states while generating the
mutants. Our goal is to be able to apply this strategy without any information
on how the mutants are generated (e.g., generated by other frameworks than
ours) and to fairly compare with an exact approach that makes no assumption
on the locality of differences. Once the set of infected states Sinfect is obtained215

(by any means), the second step is to generate traces that cover such infected
states.

For weak mutation (WM BS), a trace t is selected (select call on lines 1 and
7 in Algorithm 1) by concatenating the actions of (i) the shortest walk from
the initial state i to a randomly chosen state a ∈ Sinfect and (ii) a random220

walk starting from a. To proceed, the first step during trace generation is to
compute the shortest distance (i.e., the number of transitions) between each
state of the original TS o (or its mutant m resp.) and the initial state i of o
(or m resp.) using a standard breadth-first search [28]. For strong mutation
(SM BS), instead of a random walk starting from a, the algorithm will consider225

the actions of a path starting from a and returning to i using the computed
shortest distance: the distance from a to i will (not strictly) decrease each time
a transition is taken in the path.

3.3.3. Estimating the Number of Required Runs

One of the parameters for Algorithm 1 is the number of traces from the230

original (resp. mutant) model and run on the mutant (resp. original) model:
N/2. There are two approaches depending whether we use random simulations
or biased simulations.

Random simulations

To estimate the the number of runs, we use the method proposed by Herault235

et al. [29]. In their work, they use the Chernoff-Hoeffding bound to approximate
the number of runs needed in probabilistic model checking using an approxima-
tion parameter ε > 0 and a confidence parameter δ < 1.

Under the hypothesis that traces are uniformly distributed, we can use the
same method to bound the equivalence probability and estimating the number

of runs needed to achieve these bounds. If N ≥ 4 log(2/δ)
ε2 then we have:

Pr [equiv(m, o)] = Pr

[∣∣∣∣ A

N/2

∣∣∣∣ ≤ ε] ≥ 1− δ

Where A is the number of successful runs that is either m
t

=⇒ or o
t

=⇒ for a
given trace t.240

We compute 2A/N only when the algorithm has exhausted all the runs and

set N = 8 log(2/δ)
ε2 for the number of runs as we have to account for two-way

simulation: the number of runs is thus doubled.
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Biased simulations

Regarding biased simulations, the distribution of traces will not be uniform245

as the infected states force traces to explore only given portions of the model,
viz. where the mutations are. In this case, there is no analytical method to
estimate the number of runs beforehand and N can be fixed arbitrarily. In our
experiments, we simply set the same number of runs as for random simulations
in order to allow comparison of the random and biased simulation algorithms.250

4. Empirical Assessment

This section presents the empirical assessment of the ALE, RS, and BS
approaches. We define the following research questions:

RQ1 What is the impact of weak and strong mutation on BS/RS vs. ALE
performance?255

RQ2 How many non-equivalent mutants are effectively detected by the RS and
BS approaches?

RQ3 What are the worst case execution times for the ALE and BS/RS ap-
proaches?

4.1. Protocol260

To answer these RQs we consider several models (from different kinds of
systems), where we apply the following procedure: (i) we generate a set of
mutants from the model using the operators presented in Table 2 for orders 1,
2, 5, and 10; (ii) for each order, we sample 100 non-equivalent mutants (using the
ALE algorithm to guarantee non-equivalence) to form the mutant set M ; (iii) for265

each mutant in M , we measure the execution time and result of: 3 executions
of weak mutation random and biased search (WM RS/BS), and 3 executions of
strong mutation-biased search (SM BS) algorithms3 with 4 different values of
δ and ε; and the executions of the ALE algorithm. In the following we detail
the different steps of the procedure. The assessment has been performed on a270

Debian 3.16.7 x86 64 GNU/Linux running on a 16 cores, 2.2 GHz, 16Gb RAM
virtual machine.

4.1.1. Models

We carry out the assessment on 12 different models coming from different
sources and with varying size detailed in Table 1. The different characteris-275

tics considered are: the number of states (States); the number of transitions
(Trans.); the number of actions (Act.); the number of incoming plus outgoing
transitions per state (Avg. deg.); the maximal number of states between the

3As explained in section 3.3.1, SM RS is not considered for the assessment due to the poor
results during our initial attempts.
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Table 1: Models characteristics
Model States Trans. Act. Avg.

deg.
BFS

height
Back

lvl tr.
S. V. Mach. 9 13 14 1.44 5 3
C. P. Term. 16 17 15 1.55 7 4
Minepump 25 41 23 4.64 15 9
Claroline 106 2,055 106 19.37 1 105
Elsa-RR 384 1,214 384 3.16 194 174
Elsa-RRN 615 1,771 615 2.88 369 289
AGE-RR 772 6,639 772 8.60 328 408
AGE-RRN 1,101 10,960 1,101 9.96 426 662
Random 1 10,000 13,652 120 1.37 7,924 3,303
Random 2 15,000 20,488 300 1.37 11,865 4,899
Random 3 15,000 20,488 210 1.37 11,865 4,899
Random 4 15,000 20,488 150 1.37 11,865 4,899

initial state and any other state when traversing the TS in breadth-first search
(BFS h.); the number of transitions with a source state that has a higher BFS h.280

value than its destination state (Back lvl tr.). The models are: the soda vend-
ing machine model (S.V.Mach.), a small example describing the behaviour of a
machine selling soda and tea [30]; the card payment terminal (C.P.Term.), also
a small example describing the behaviour of a terminal used in a store to pay
by card; the mine pump (Minepump), a well-known specification exemplar that285

models the behaviour of a pump keeping a mine safe from flooding by pumping
water from a sink while avoiding methane explosions [30]; the Claroline website
(Claroline), representing the navigational usages of a real online course manage-
ment platform. The latter was reverse-engineered from an Apache log using a
2-gram inference method from Sprenkle et al. [31]; WordPress models (AGE-RR,290

AGE-RRN, Elsa-RR, and Elsa-RRN ) that represent the navigational usages of
two different real WordPress instances. They were also reverse-engineered using
the same 2-gram inference method [31]. the AGE-RR and Elsa-RR, we consid-
ered only request type (e.g., POST, GET, HEAD) and the requested resource
(e.g., “/index.php”) in the sequences used. For the AGE-RRN and Elsa-RRN295

models, we considered request type, requested resource, and parameter names
(e.g., “?page=”) in the sequences used as input of the 2-gram inference method.

The random models (Random 1 to Random 4 ) were generated according
to the following procedure: (i) generate a set of random oriented graphs and
compute the different measures from Table 1 (except number of actions); (ii) se-300

lect those graphs that are likely to represent a real system according to Pelánek
[32], i.e., those having a small average degree, a large BFS height and a small
number of back level edges (in this order); (iii) apply a random labelling mul-
tiple times and compute the occurrence probability, i.e., the probability of the
labels to obtain a set of randomly generated TSs; (iv) select the TS that has305
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Table 2: Transition system mutation operators

SMI State Missing operator removes a state (other than the initial state)
and all its incoming/outgoing transitions.

WIS Wrong Initial State operator changes the initial state.
AEX Action Exchange operator replaces the action linked to a given tran-

sition by another action.
AMI Action Missing operator removes an action from a transition.
TMI Transition Missing operator removes a transition.
TAD Transition Add operator adds a transition between two states.
TDE Transition Destination Exchange operator modifies the destination of

a transition.

the following properties4: the probability of the most frequently occurring label
in the TS is less than, or equal to, 6%, and the cumulated probability of the 5
most frequently occurring labels is less than or equal to 20% [33]. We end up
with 4 random models as recorded in Table 1.

4.1.2. Mutant Generation and Sampling310

First-order mutants are generated using the operators presented in Table 2.
Each operator is applied (arbitrarily) 10 times on the S.V.Mach., C.P.Term.,
and Minepump models. Due to the small size of the models, applying the
same mutation operator more than 10 times is not relevant. Operators are also
applied (arbitrarily) 500 times on the other models. In the same way, N -order315

mutants (with N equal to 2, 5, or 10 in our case) are generated by applying
the same operators 10 or 500 times (depending on the model) on (N − 1)-order
mutants. After the generation, we perform a random sampling of 100 mutants
(when available) for orders 1, 2, 5, and 10, giving us a set M with 370 mutants
for the S.V.Mach., C.P.Term., and Minepump models, and 400 mutants for the320

other models. To ease mutant generation, we use our compact representation
[34].

4.1.3. Non-determinism

We checked all the 4,710 mutants and found that only 3.54% of them are
non-deterministic. Nevertheless, there is a great disparity amongst models as325

the non-determinism rate varies from 0% for Elsa-RRN to 15.5% for Claroline.
Higher-order mutation greatly influenced non-determinism rates: the sole order
10 is responsible for 53% of all non-deterministic mutants. In terms of mutation
operators, TAD accounts for a large majority of non-deterministic first-order
mutants (78%) and AEX for the remaining 22%. At higher orders, these two330

operators are largely involved. They are absent only in the Minepump model
where TDE and AMI appear for two non-deterministic mutants.

4These properties are likely to represent real systems [32]
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4.1.4. Algorithm Execution

To run the language equivalence algorithms (for WM and SM), we use the
HKC library [35], an OCaml implementation of the ALE algorithm [17] com-335

piled using OCamlbuild. This tool handles non-deterministic TSs using different
strategies: the automata may be processed either forward of backwards, and the
exploration strategy may be breadth-first or depth-first. For each mutant, we
execute the HKC library using each of the 4 possible configurations. The input
models and their mutants have been transformed from our XML format to the340

Timbuk input format supported by HKC.
The random and biased simulation algorithms are implemented in Java using

multi-threading to parallelize trace selection and execution as described in Algo-
rithm 1 (lines 1, 3, 7, and 9). In our experiments, we set up the algorithm with
4 threads and run 4 instances in parallel on our virtual machine with 16 cores.345

We run the simulation algorithms with 4 different values of δ and ε determining
the number of traces selected and executed (N in Algorithm 1):

• RS1/BS1: (δ = 1e− 10, ε = 0.01, N = 1, 897, 519);

• RS2/BS2: (δ = 1e− 10, ε = 0.1, N = 18, 975);

• RS3/BS3: (δ = 1e− 5, ε = 0.1, N = 9, 764);350

• RS4/BS4: (δ = 1e− 1, ε = 0.1, N = 2, 396).

For all the simulation configurations and all models, we fixed the trace length
k to 3,000, which was our compromise between performance and non-equivalence
detection: setting k to BFS height led to crashes in some cases. In order to
answer RQ3, we also run each algorithm (RS1/BS1 to RS4/BS4, plus the 4355

possible ALE configurations) with the model itself as the “mutant”. Those
(unrealistic) equivalent detection runs between the model and itself are only
used to approximate the worst computation time of the different algorithms.

4.2. Results and Discussion

4.2.1. Random/biased simulations and ALE - Answering RQ1360

Figure 1 presents the execution time per mutant of the studied algorithms,
which is detailed in the Appendix. Regarding weak mutation scenarios, the ALE
approach is the fastest in eleven of our models. On the AGE-RN model, biased
simulations are faster for the largest numbers of runs. However, the results are
at the limit of non-significance (see Table 3), so that the only clearly significant365

result is for BS1 on this model. For AGE-RNN, execution times for biased
simulations are non-significant. Random simulations are also faster than ALE on
AGE-RRN but only certain settings are significant. We thus conclude that the
ALE approach is more interesting in terms of execution time. When we compare
the two forms of simulations, for the smallest models, biased simulations are370

either on par for the smallest models or slightly better. Additional computations
such as the breath-first search used for biased simulation do not cause significant
overhead. For the largest random models, random simulations are faster. In
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Figure 1: Execution time of the equivalent mutant detection

these cases, the overhead of computing infected states and paths that cover
these states is greater and random simulation is faster. However, lower standard375

deviations for biased simulation execution times over random ones make the BS
approach easier to use.

Regarding strong mutation, several observations can be made. First, random
simulations provide very high execution times compared to biased simulations
or the ALE algorithm (the analysis of one model is stopped after one hour).380

This may be due to the difficulty to reach the initial state again when per-
forming random walks in the TSs. Second, biased simulations are faster than
ALE executions for models larger than 300 states. On the largest models, bi-
ased simulations can be up to 1,000 times faster. We thus conclude that these
are the most interesting situations in which to use BS, for mutation analysis.385

On smaller models, the ALE algorithm’s performance is quite impressive and
therefore should be privileged.

4.2.2. Non-equivalent mutant detection - Answering RQ2

To answer RQ2, we compute the non-equivalent mutant classification recall
of the BS/RS algorithms (in Figure 2): i.e., the percentage of non-equivalent390

mutants detected by the BS/RS amongst the selected mutants. By construction,
the ALE algorithm has a recall of 100%, it is therefore not shown here. It is also
noted that the precision is 100% since all the non-equivalent mutants detected
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Figure 2: Percentage of non-equivalent mutants correctly detected (recall)

are indeed killable, by construction of our mutant set.
All our simulations detect more than 85% of the non-equivalent mutants,395

with a clear advantage for biased simulations which never achieve worse than
95% for the weak mutation scenario. As for time, deviation in the recall is
smaller for biased simulations thus making the approach more predictable in
addition of being more reliable. We also observe that the random simulations
are more sensitive to the number of runs: we need more of them to discover400

discrepancies by luck. This effect cannot be observed for biased simulations. A
possible explanation is that the number of runs required to cover infected states
with traces is lower than the number we provided.

For strong mutation, the BS approach’s recall decreases to around 92%
(recall = 92%, σ = 3%): amongst the 5,113 non-equivalent mutant non-405

detections (over a total of 64,529 non-equivalent mutant evaluations), 1,905
(37%) were TAD mutants, 1,755 (34%) were WIS mutants, 545 (11%) were TDE
mutants, and 459 (9%) were 2nd-order TAD mutants (i.e., TAD-TAD mutants);
the rest of non-equivalent mutants not detected is distributed amongst different
operators with less than 2% for each. This decrease may be due to the difficulty410

to find a path to the initial state: for strong mutation, the BS trace selection
algorithm will consider traces starting from, and ending in, the initial state.
This means that mutations creating (TAD) or modifying (TDE) a back-level
transition will not be detected using SM BS. Concerning WIS mutants, we be-
lieve that, as the WIS operator only changes the initial state of the TS, the set415

of infected states (Sinfect) is empty, which is equivalent in our implementation
of SM BS to considering all the states infected.

4.2.3. Worst case scenario (execution time) - Answering RQ3

Figure 3 presents a compact view of the worst execution time of the different
algorithms (RQ3). We grouped the different results by the kind of model: em-420

bedded system, web-application, or randomly generated model. As expected,
the RS/BS execution time is directly correlated to the δ and ε values: a lower
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Figure 3: Worst execution time of the equivalent mutant detection using the model itself as
mutant

number of traces selected and executed (N) takes less time. Overall, the time
of the ALE executions grows with the size of the model, reaching 5,660 seconds
(more than one and a half hour) for the worst WM ALE execution time on the425

Random 2 model.

4.3. Threats to Validity

4.3.1. Internal Validity

We performed our experiment on 12 models: 3 academic examples (S. V. Mach.,
C. P. Term., Minepump), 5 larger real-world models (Claroline, Elsa-RR, Elsa-430

RRN, AGE-RR, and AGE-RRN ) and 4 randomly generated models (Random 1-
4 ). These models come from different sources and represent two different kinds
of systems: embedded systems designed by an engineer and web-based appli-
cations where the model has been reverse-engineered from a running instance
using a 2-gram inference method [31]. The random models were built from a435

set of generated TSs in order to match the real system state-space measures, as
described by Pelánek [32, 33].

4.3.2. Construct Validity

The RS/BS δ and ε values have been arbitrarily chosen. The first values
(RS1/BS1: δ = 1e− 10, ε = 0.01) are the same as in Hérault et al. [29]. As the440

number of traces selected and executed N equals to 8 log(2/δ)
ε2 , we chose to run

the algorithm with 3 higher parameters values in order to reduce N . We cannot
guarantee that our parameter values are relevant for any model. They will
rather depend on the model size, the desired approximation (ε) and confidence
(δ), and the time budget allowed for the equivalence analysis.445

To the best of our knowledge, the HKC library [35] was the only publicly
available tool able to perform ALE checking on non-deterministic TSs. We
cannot guarantee that there are no other other tools providing the same features
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Table 3: P-values of the Wilcoxon rank sum test between the WM RS/BS execution times
and the WM ALE execution times.

Model WM RS1 WM RS2 WM RS3 WM RS4
S.V.Mach. ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16
C.P.Term. ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16
Minepump ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16
Claroline ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16
Elsa-RR ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16
Elsa-RRN ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16
AGE-RR 2.866e− 03 9.676e− 03 2.021e− 02 3.249e − 01
AGE-RRN 8.143e − 02 8.379e− 04 6.981e− 04 2.162e− 02
Random 1 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16
Random 2 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16
Random 3 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16
Random 4 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16

WM BS1 WM BS2 WM BS3 WM BS4
S.V.Mach. ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16
C.P.Term. ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16
Minepump ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16
Claroline ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16
Elsa-RR ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16
Elsa-RRN ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16
AGE-RR 9.107e− 03 4.744e− 02 6.405e − 02 1.382e − 01
AGE-RRN 5.991e − 01 7.076e − 01 5.674e − 01 5.168e − 01
Random 1 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16
Random 2 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16
Random 3 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16
Random 4 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16 ≤ 2.2e− 16

with lower execution time. To avoid bias in the random selections in the RS/BS
algorithms, we execute each configuration of the different algorithms 3 times.450

4.3.3. External Validity

We cannot guarantee that our results are generalizable to all behavioural
models. However, we recall the diversity of the model sources (hand-crafted,
reverse-engineered, and randomly generated to match real system state-space)
as well as the diversity of the considered systems. Variations in performance of455

the algorithms also suggest mitigation of this threat.

4.3.4. Conclusion Validity

To confirm our observations on the recall of the RS/BS algorithms, we
test the null hypothesis between the outputs of our algorithm (the mutant is
equivalent/non-equivalent) and a random equivalent/non-equivalent assignment460

using a Wilcoxon rank sum test. The p-value lower than 2.2e-165 discredits the
null hypothesis showing that the equivalent/non-equivalent detection recall is
significant.

To confirm the statistical difference between the execution times of the
RS/BS and ALE algorithms, we test the null hypothesis between RS/BS ex-465

ecution time and ALE execution time for weak and strong mutation for each
of our input models using a Wilcoxon rank sum test. For weak mutation, the

5Value 2.2e− 16 corresponds to the smallest possible p-value computable with R.
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results of this statistical test are shown in Table 3: for every model except AGE-
RR/AGE-RRN models, the p-value is lower than 2.2e-16, discrediting the null
hypothesis and showing a significant difference in the execution times. The exe-470

cution times of AGE-RR/AGE-RRN model are only significant for RS1 to RS3,
BS1, and BS3 (for AGE-RR); and RS2 to RS4 (for AGE-RRN ). For strong mu-
tation, all the p-values were lower than 2.2e-16, showing a significant difference
in execution time between the BS algorithm and the ALE algorithm in a strong
mutation scenario.475

4.3.5. Verifiability

The input models, as well as the tools and scripts used to perform the
empirical assessment, are available online at https://projects.info.unamur.
be/vibes/mutants-equiv.html. The input models are encoded using an XML
format and are processed by our Java tools (part of VIBeS [36]) for the RS/BS480

algorithms. The ALE execution is done using HKC [35]. Both VIBeS and HKC
are released under open source licences (MIT license for VIBeS, GNU LGPL for
HKC), allowing one to inspect, reuse, or adapt the code. VIBeS’s source code
is available online in a GitHub repository at https://github.com/xdevroey/

vibes, and the different Maven artefacts were deployed on the Maven central485

repository. As our assessment involves randomization, the complete results
are also downloadable as well as the script files used to perform the analysis
described in section 4.2. Finally, one may (re-)run the complete assessment
using the provided Makefile.

4.4. Lessons Learned490

From our experiment we draw the following lessons. (i) Regarding weak mu-
tation and independently of the size or nature of the models, the ALE approach
provides faster and exact answers. This indicates that state-of-the-art language
equivalence algorithms can be used successfully for such a task. (ii) Regarding
strong mutation, biased random simulations are of interest for the web and the495

random models, and gains increase with the size (from one to three orders of
magnitude). Having simulations with recall values above 90% allow their use as
reasonably reliable fast filters that can discard non-equivalent mutants, leaving
to ALE algorithms the difficult cases. This helps accelerating the analysis of
large number of mutants. (iii) Biased simulations are more predictable in terms500

of execution time and recall. Additionally, drastically increasing the number
of runs does not affect their performance as opposed to random simulations.
(iv) The configuration of the ALE algorithm (forward/backward processing, or
breadth-first or depth-first exploration) has little influence on the total execu-
tion time (regarding equivalent mutant detection). This may be explained by505

the fact that mutations occur randomly and therefore do not privilege any graph
traversal strategy.
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5. Related Work

The usage of simulation heuristics for testing purposes is presented in Section
5.1). Approaches related to the equivalent mutant problem and model-based510

mutation are then discussed in Sections 5.2 and 5.3, respectively.

5.1. Simulation

Our random simulation heuristic, which yields a probabilistic interpretation
of the problems under analysis by making several repeated samples, is akin to
Monte-Carlo simulation. Monte-Carlo methods were found to be quite efficient515

for searching and reasoning on large data spaces. In software verification, Monte
Carlo simulations have been used to devise statistical model-checking techniques
[37, 29] that alleviate state explosion. In software testing, Langdon et al. [38]
used them, together with genetic programming, in order to identify subsuming
higher-order mutants. Poulding and Feldt [39] used a variant of the method,520

called Nested Monte-Carlo Search, to generate random data structures to be
used for testing. Along the same lines, Nested Monte-Carlo Search was used,
by Poulding and Feldt [40] to heuristically perform model checking of Java
programs. All these methods are related to ours since they use Monte-Carlo.
However, none of them aims at modelling mutants or tackling the equivalent525

mutant problem.
Walkinshaw and Bogdanov [41] argue that using random selection (like Lo

and Khoo [42]) in order to compare automata languages may be biased due
to the impossibility to obtain a representative sample of the language. In their
work, they use a model-based testing approach (the W-method [43]) to compare530

two automata from the accepted language perspective, and a diff algorithm
to compare them with respect to their transition structures (which is a more
elaborate version of our heuristic used to compute the set of infected states
Sinfect). In contrast, we look for difference instead of similarity, which motivates
the choice of easier-to-compute random heuristics as baselines to compare with535

an ALE approach.

5.2. Equivalent mutants

Previous work demonstrated that equivalent mutants skew the mutation
score measurements and thus hinder the effectiveness of the method [44, 4].
Unfortunately, it has been proven that judging whether a code mutant is equiv-540

alent to the original code is an undecidable problem [45]. This means that there
is no solution to the general case of this problem. Luckily, since mutations
are small syntactic changes, heuristics can identify several classes of them [15].
Two types of such heuristics exist in the literature: those that operate in a static
manner and those that are dynamic.545

Static techniques include the use of compiler optimizations [46], constraint
solving [25], program slicing [47], data-flow patterns [48], and formal verification
[26]. All these techniques are effective at detecting certain types of equivalent
mutants, i.e., trivial equivalencies [15], but unfortunately, they are not applica-
ble to model mutants.550
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Dynamic techniques measure the differences between the test executions of
the original and mutant programs and identify likely non-equivalent mutants.
Schuler and Zeller [49] and Papadakis et al. [50] measure the impact on coverage,
while Kintis et al. [51] measure the impact on other mutants (second-order mu-
tants). Our technique shares the same notion of equivalence because we check555

the model trace in order to judge it. However, we do not consider executable
code as we only deal with model mutants. We also sample execution in order to
increase the efficiency of the process. It is to be noted that we have a different
notion of equivalence since we deal with behavioural models. Therefore, differ-
ences in traces imply different behaviours, which is not the case for executable560

code.
Non-determinism complicates equivalence detection both at the code [52]

and model levels [53]. Patel and Hierons [52] associate predictions from pairs of
inputs and outputs of the mutant program and check whether these predictions
can be discarded by the original program, hence showing non-equivalence. This565

is not applicable to our case since our models do not have outputs. Aichernig and
Jöbstl [53] also encode the semantics of the action models in terms of constraints
and use refinement to check conformance in the context of non-determinism. In
our case, RS/BS manage non determinism in the TSs by considering all the
possible runs.570

Perhaps the closest work is that of Papadakis and Malevris [54] who sample
execution paths according to their length (select the k-shortest paths), symbol-
ically execute them and judge mutant equivalence based on the selected paths.
The main differences with our approach are that we additionally sample paths
that cover infected states and we operate on behavioural models instead of ac-575

tual code representation.

5.3. Model-based mutation

Specification mutation testing aims at identifying defects on the implemen-
tations under test by altering the models of the system and requiring the design
of tests that identify these differences [11]. The main point about this tech-580

nique is that it complements code-based testing by targeting problems related
to missing functionality [13, 12].

Given the plethora of the existing models and languages, many model-based
mutation techniques have been developed. Woodward [55], Fabbri et al. [56] and
Hierons and Merayo [57] suggested a set of mutant operators for algebraic spec-585

ifications, finite state machines and Statecharts, and probabilistic finite state
machines, respectively. Similarly, Henard et al. [58], Arcaini et al. [59] and
Papadakis et al. [10] mutated feature models and combinatorial interaction
models.

Regarding behavioural models, like the ones we used here, Aichernig et al.590

[21, 60] developed a mutation-based test generation technique for state ma-
chines. Belli and Beyazit [61] compare mutation-testing strategies when applied
on event-based and state-based models, and found that both had similar effec-
tiveness. In follow-up studies, Belli et al. [62] and Aichernig et al. [14] evaluated
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their model-based mutation testing approaches on industrial systems and found595

that they were complementary, in terms of fault detection, to code-based testing.
Generally, the EMP is seldom the single focus of the above approaches as it

is in the present study.

6. Conclusion

In this paper, we investigated the relevance of an exact language equivalence600

approach to tackle the equivalent mutant problem at the model level. To do so,
we offered two algorithms based on random simulation and compared them to
language equivalence under the weak and the strong mutation testing scenarios.
Our experiments demonstrated the efficiency of the exact approach for the weak
mutation case. For the strong mutation case, our biased simulations – that605

pre-process the models to detect states that are infected by mutations – are
efficient and up to 1,000 times faster on models that contain more than 300
states. Though, our simulations introduce detection errors up to 8%. These
results suggest that the equivalence analysis can be performed much faster by
using the simulations, to quickly discard many non-equivalent mutants, and610

employing exact approaches only on the small number of probably equivalent
mutants that remain.

There is room for improvement. First, we will extend our experiments to
other forms of equivalence and tools. We would also like to switch from the pure
equivalence analysis to test generation concerns by analysing counter-examples.615

Our long-term goal is to draw attention on the applications of language equiv-
alence for mutation testing and develop further EMP-dedicated solutions.

Acknowledgements

We would like to thank Damien Pous for his support on the HKC tool. This
research was partially funded by the EU Project STAMP ICT-16-10 No.731529620

and the Dutch 4TU project “Big Software on the Run” as well as by the Eu-
ropean Regional Development Fund (ERDF) “Ideas for the future Internet”
(IDEES) project.

References

[1] X. Devroey, G. Perrouin, M. Papadakis, A. Legay, P.-Y. Schobbens, P. Hey-625

mans, Automata Language Equivalence vs. Simulations for Model-Based
Mutant Equivalence: An Empirical Evaluation, in: 2017 IEEE Interna-
tional Conference on Software Testing, Verification and Validation (ICST),
IEEE, Tokyo, Japan, 2017, pp. 424–429. doi:10.1109/ICST.2017.46.

[2] J. H. Andrews, L. C. Briand, Y. Labiche, A. S. Namin, Using Mutation630

Analysis for Assessing and Comparing Testing Coverage Criteria, IEEE
Transactions on Software Engineering 32 (8) (2006) 608–624. doi:10.

1109/TSE.2006.83.

20

http://dx.doi.org/10.1109/ICST.2017.46
http://dx.doi.org/10.1109/TSE.2006.83
http://dx.doi.org/10.1109/TSE.2006.83
http://dx.doi.org/10.1109/TSE.2006.83


[3] J. Offutt, A mutation carol: Past, present and future, Information and
Software Technology 53 (10) (2011) 1098–1107. doi:10.1016/j.infsof.635

2011.03.007.

[4] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, M. Harman, Mu-
tation testing advances: An analysis and survey, Advances in Computers
112.

[5] M. Papadakis, N. Malevris, Automatic mutation test case generation640

via dynamic symbolic execution, in: International Symposium on Soft-
ware Reliability Engineering, ISSRE, IEEE, 2010, pp. 121–130. doi:

10.1109/ISSRE.2010.38.

[6] G. Fraser, A. Arcuri, Achieving scalable mutation-based generation of
whole test suites, Empirical Software Engineering (2014) 1–30doi:10.645

1007/s10664-013-9299-z.

[7] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, G. Fraser, Are
Mutants a Valid Substitute for Real Faults in Software Testing?, in: In-
ternational Symposium on the Foundations of Software Engineering, FSE,
ACM, 2014, pp. 654–665. doi:10.1145/2635868.2635929.650

[8] T. T. Chekam, M. Papadakis, Y. L. Traon, M. Harman, An empirical
study on mutation, statement and branch coverage fault revelation that
avoids the unreliable clean program assumption, in: Proceedings of the
39th International Conference on Software Engineering, ICSE 2017, Buenos
Aires, Argentina, May 20-28, 2017, 2017, pp. 597–608. doi:10.1109/ICSE.655

2017.61.

[9] R. Baker, I. Habli, An empirical evaluation of mutation testing for im-
proving the test quality of safety-critical software, IEEE Transactions on
Software Engineering 39 (6) (2013) 787–805. doi:10.1109/TSE.2012.56.

[10] M. Papadakis, C. Henard, Y. Le Traon, Sampling program inputs with660

mutation analysis: Going beyond combinatorial interaction testing, in: In-
ternational Conference on Software Testing, Verification and Validation,
ICST, IEEE, 2014, pp. 1–10. doi:10.1109/ICST.2014.11.

[11] T. A. Budd, A. S. Gopal, Program testing by specification mutation,
Computer Languages 10 (1) (1985) 63–73. doi:10.1016/0096-0551(85)665

90011-6.

[12] W. E. Howden, Reliability of the path analysis testing strategy., IEEE
Transactions on Software Engineering 2 (3) (1976) 208–215. doi:10.1109/
TSE.1976.233816.

[13] J. M. Voas, G. McGraw, Software Fault Injection: Inoculating Programs670

Against Errors, John Wiley & Sons, Inc., 1997. doi:10.1002/(SICI)

1099-1689(199903)9:1<75::AID-STVR174>3.0.CO;2-T.

21

http://dx.doi.org/10.1016/j.infsof.2011.03.007
http://dx.doi.org/10.1016/j.infsof.2011.03.007
http://dx.doi.org/10.1016/j.infsof.2011.03.007
http://dx.doi.org/10.1109/ISSRE.2010.38
http://dx.doi.org/10.1109/ISSRE.2010.38
http://dx.doi.org/10.1109/ISSRE.2010.38
http://dx.doi.org/10.1007/s10664-013-9299-z
http://dx.doi.org/10.1007/s10664-013-9299-z
http://dx.doi.org/10.1007/s10664-013-9299-z
http://dx.doi.org/10.1145/2635868.2635929
http://dx.doi.org/10.1109/ICSE.2017.61
http://dx.doi.org/10.1109/ICSE.2017.61
http://dx.doi.org/10.1109/ICSE.2017.61
http://dx.doi.org/10.1109/TSE.2012.56
http://dx.doi.org/10.1109/ICST.2014.11
http://dx.doi.org/10.1016/0096-0551(85)90011-6
http://dx.doi.org/10.1016/0096-0551(85)90011-6
http://dx.doi.org/10.1016/0096-0551(85)90011-6
http://dx.doi.org/10.1109/TSE.1976.233816
http://dx.doi.org/10.1109/TSE.1976.233816
http://dx.doi.org/10.1109/TSE.1976.233816
http://dx.doi.org/10.1002/(SICI)1099-1689(199903)9:1<75::AID-STVR174>3.0.CO;2-T
http://dx.doi.org/10.1002/(SICI)1099-1689(199903)9:1<75::AID-STVR174>3.0.CO;2-T
http://dx.doi.org/10.1002/(SICI)1099-1689(199903)9:1<75::AID-STVR174>3.0.CO;2-T
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[29] T. Hérault, R. Lassaigne, F. Magniette, S. Peyronnet, Approximate prob-
abilistic model checking, in: Verification, Model Checking, and Ab-720

stract Interpretation, 5th International Conference, VMCAI, Vol. 2937
of LNCS, Springer, Venice, Italy, 2004, pp. 73–84. doi:10.1007/

978-3-540-24622-0_8.

[30] A. Classen, Modelling with FTS: a Collection of Illustrative Examples,
Tech. Rep. P-CS-TR SPLMC-00000001, PReCISE Research Center, Uni-725

versity of Namur, Namur, Belgium (2010).
URL https://projects.info.unamur.be/fts/publications/

[31] S. E. Sprenkle, L. L. Pollock, L. M. Simko, Configuring effective naviga-
tion models and abstract test cases for web applications by analysing user
behaviour, Software Testing, Verification and Reliability 23 (6) (2013) 439–730

464. doi:10.1002/stvr.1496.
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Appendix A. Complete execution results835

This appendix presents the results of the different weak and strong mutation
ALEs/BSs/RSs algorithms. For each algorithm, a table gives the execution
parameter values (δ, ε, and the resulting number of runs N), the recall, the
average execution time (time), and the standard deviation (σ).

S.V.Mach.840

Weak Mutation Strong Mutation

δ ε N Recall time σ Recall time σ
ALE 100% <0.01 <0.01 100% <0.01 <0.01
BS 1e-10 0.01 1,897,519 98% 0.02 0.03 91% 0.26 1.00

1e-10 0.10 18,975 97% 0.02 0.02 91% 0.04 0.06
1e-05 0.10 9,764 97% <0.01 0.02 91% 0.03 0.05
0.10 0.10 2,396 98% 0.01 0.02 91% 0.02 0.04

RS 1e-10 0.01 1,897,519 97% 0.02 0.03 N/A N/A N/A
1e-10 0.10 18,975 96% 0.01 0.02 N/A N/A N/A
1e-05 0.10 9,764 97% <0.01 0.01 N/A N/A N/A
0.10 0.10 2,396 97% 0.01 0.03 N/A N/A N/A

C.P.Term.
Weak Mutation Strong Mutation

δ ε N Recall time σ Recall time σ
ALE 100% <0.01 <0.01 100% <0.01 <0.01
BS 1e-10 0.01 1,897,519 97% 0.49 9.05 91% 0.21 0.76

1e-10 0.10 18,975 96% 0.02 0.10 91% 0.04 0.05
1e-05 0.10 9,764 97% 0.01 0.05 91% 0.03 0.05
0.10 0.10 2,396 96% 0.01 0.03 91% 0.03 0.04

RS 1e-10 0.01 1,897,519 97% 0.49 9.04 N/A N/A N/A
1e-10 0.10 18,975 96% 0.02 0.11 N/A N/A N/A
1e-05 0.10 9,764 97% <0.01 0.05 N/A N/A N/A
0.10 0.10 2,396 96% 0.01 0.04 N/A N/A N/A

845

Minepump
Weak Mutation Strong Mutation

δ ε N Recall time σ Recall time σ
ALE 100% <0.01 <0.01 100% <0.01 <0.01
BS 1e-10 0.01 1,897,519 98% 0.40 8.54 92% 0.21 0.80

1e-10 0.10 18,975 98% 0.02 0.15 92% 0.04 0.06
1e-05 0.10 9,764 99% <0.01 0.04 92% 0.03 0.05
0.10 0.10 2,396 98% 0.01 0.04 92% 0.03 0.04

RS 1e-10 0.01 1,897,519 98% 0.39 8.43 N/A N/A N/A
1e-10 0.10 18,975 98% 0.02 0.15 N/A N/A N/A
1e-05 0.10 9,764 98% <0.01 0.06 N/A N/A N/A
0.10 0.10 2,396 98% 0.01 0.05 N/A N/A N/A
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Claroline
Weak Mutation Strong Mutation

δ ε N Recall time σ Recall time σ
ALE 100% 0.02 0.02 100% 0.10 0.12
BS 1e-10 0.01 1,897,519 99% 3.62 49.96 98% 0.59 2.00

1e-10 0.10 18,975 99% 0.09 0.57 98% 0.17 0.42
1e-05 0.10 9,764 99% 0.07 0.32 98% 0.17 0.28
0.10 0.10 2,396 99% 0.05 0.12 98% 0.18 0.71

RS 1e-10 0.01 1,897,519 96% 29.99 139.34 N/A N/A N/A
1e-10 0.10 18,975 95% 0.39 1.52 N/A N/A N/A
1e-05 0.10 9,764 94% 0.23 0.80 N/A N/A N/A
0.10 0.10 2,396 94% 0.10 0.25 N/A N/A N/A

850

Elsa-RR
Weak Mutation Strong Mutation

δ ε N Recall time σ Recall time σ
ALE 100% <0.01 <0.01 100% 1.05 0.67
BS 1e-10 0.01 1,897,519 99% 0.06 0.05 95% 0.96 3.86

1e-10 0.10 18,975 100% 0.04 0.04 95% 0.15 0.27
1e-05 0.10 9,764 99% 0.05 0.04 95% 0.13 0.19
0.10 0.10 2,396 100% 0.02 0.03 95% 0.09 0.16

RS 1e-10 0.01 1,897,519 88% 73.03 209.50 N/A N/A N/A
1e-10 0.10 18,975 86% 0.92 2.56 N/A N/A N/A
1e-05 0.10 9,764 86% 0.51 1.38 N/A N/A N/A
0.10 0.10 2,396 87% 0.13 0.33 N/A N/A N/A

Elsa-RRN855

Weak Mutation Strong Mutation

δ ε N Recall time σ Recall time σ
ALE 100% 0.01 0.01 100% 3.64 2.29
BS 1e-10 0.01 1,897,519 100% 0.05 0.05 90% 2.93 10.34

1e-10 0.10 18,975 100% 0.04 0.04 90% 0.18 0.25
1e-05 0.10 9,764 99% 0.04 0.04 90% 0.16 0.21
0.10 0.10 2,396 100% 0.03 0.03 90% 0.10 0.11

RS 1e-10 0.01 1,897,519 97% 19.24 100.73 N/A N/A N/A
1e-10 0.10 18,975 95% 0.37 1.42 N/A N/A N/A
1e-05 0.10 9,764 95% 0.22 0.75 N/A N/A N/A
0.10 0.10 2,396 94% 0.08 0.21 N/A N/A N/A

AGE-RR
Weak Mutation Strong Mutation

δ ε N Recall time σ Recall time σ
ALE 100% 0.64 0.94 100% 21.18 13.70
BS 1e-10 0.01 1,897,519 100% 0.06 0.08 90% 9.38 42.87

1e-10 0.10 18,975 100% 0.05 0.10 90% 0.24 0.45
1e-05 0.10 9,764 100% 0.04 0.08 90% 0.18 0.47
0.10 0.10 2,396 100% 0.03 0.04 89% 0.09 0.25

RS 1e-10 0.01 1,897,519 96% 38.68 188.18 N/A N/A N/A
1e-10 0.10 18,975 94% 0.68 2.50 N/A N/A N/A
1e-05 0.10 9,764 95% 0.35 1.27 N/A N/A N/A
0.10 0.10 2,396 94% 0.14 0.47 N/A N/A N/A
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AGE-RRN
Weak Mutation Strong Mutation

δ ε N Recall time σ Recall time σ
ALE 100% 0.21 0.22 100% 75.29 51.92
BS 1e-10 0.01 1,897,519 100% 0.04 0.07 95% 7.10 32.32

1e-10 0.10 18,975 100% 0.05 0.05 95% 0.32 0.46
1e-05 0.10 9,764 100% 0.04 0.04 95% 0.27 0.43
0.10 0.10 2,396 100% 0.04 0.04 95% 0.21 0.31

RS 1e-10 0.01 1,897,519 90% 117.21 362.41 N/A N/A N/A
1e-10 0.10 18,975 88% 1.98 4.78 N/A N/A N/A
1e-05 0.10 9,764 87% 1.12 2.63 N/A N/A N/A
0.10 0.10 2,396 85% 0.41 0.87 N/A N/A N/A

Random 1
Weak Mutation Strong Mutation

δ ε N Recall time σ Recall time σ
ALE 100% <0.01 <0.01 100% 448.61 339.19
BS 1e-10 0.01 1,897,519 100% 0.08 0.07 92% 0.78 2.50

1e-10 0.10 18,975 100% 0.07 0.07 92% 0.09 0.08
1e-05 0.10 9,764 100% 0.07 0.07 92% 0.09 0.06
0.10 0.10 2,396 99% 0.07 0.07 92% 0.07 0.05

RS 1e-10 0.01 1,897,519 100% 0.03 0.07 N/A N/A N/A
1e-10 0.10 18,975 100% 0.03 0.11 N/A N/A N/A
1e-05 0.10 9,764 100% 0.03 0.09 N/A N/A N/A
0.10 0.10 2,396 99% 0.03 0.08 N/A N/A N/A
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Random 2
Weak Mutation Strong Mutation

δ ε N Recall time σ Recall time σ
ALE 100% <0.01 <0.01 100% 412.37 168.90
BS 1e-10 0.01 1,897,519 100% 0.11 0.06 89% 1.22 3.35

1e-10 0.10 19,975 100% 0.10 0.06 89% 0.14 0.09
1e-05 0.10 9,764 100% 0.11 0.07 89% 0.14 0.08
0.10 0.10 2,396 100% 0.11 0.06 89% 0.12 0.07

RS 1e-10 0.01 1,897,519 100% 0.04 0.10 N/A N/A N/A
1e-10 0.10 18,975 100% 0.03 0.07 N/A N/A N/A
1e-05 0.10 9,764 100% 0.03 0.07 N/A N/A N/A
0.10 0.10 2,39 99% 0.03 0.09 N/A N/A N/A

Random 3870

Weak Mutation Strong Mutation

δ ε N Recall time σ Recall time σ
ALE 100% <0.01 <0.01 100% 367.99 154.80
BS 1e-10 0.01 1,897,519 100% 0.11 0.06 91% 1.04 3.20

1e-10 0.10 18,975 100% 0.09 0.04 91% 0.23 0.15
1e-05 0.10 9,764 100% 0.09 0.04 91% 0.23 0.14
0.10 0.10 2,396 100% 0.09 0.05 91% 0.19 0.12

RS 1e-10 0.01 1,897,519 100% 0.03 0.10 N/A N/A N/A
1e-10 0.10 18,975 100% 0.03 0.16 N/A N/A N/A
1e-05 0.10 9,764 99% 0.03 0.12 N/A N/A N/A
0.10 0.10 2,396 99% 0.02 0.07 N/A N/A N/A
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Random 4
Weak Mutation Strong Mutation

δ ε N Recall time σ Recall time σ
ALE 100% <0.01 <0.01 100% 306.37 127.02
BS 1e-10 0.01 1,897,519 100% 0.11 0.06 91% 1.09 3.23

1e-10 0.10 18,975 100% 0.10 0.05 91% 0.22 0.14
1e-05 0.10 9,764 100% 0.10 0.05 91% 0.23 0.12
0.10 0.10 2,396 100% 0.09 0.04 91% 0.19 0.11

RS 1e-10 0.01 1,897,519 100% 0.04 0.25 N/A N/A N/A
1e-10 0.10 18,975 99% 0.03 0.25 N/A N/A N/A
1e-05 0.10 9,764 100% 0.03 0.10 N/A N/A N/A
0.10 0.10 2,396 99% 0.02 0.09 N/A N/A N/A
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