VaryMinions: Leveraging RNNs to Identify
Variants in Event Logs

Sophie Fortz
sophie.fortz@unamur.be
PReCISE, NaD], Faculty of Computer
Science, University of Namur
Namur, Belgium

Patrick Heymans
patrick.heymans@unamur.be

PReCISE, NaD], Faculty of Computer

Science, University of Namur
Namur, Belgium

ABSTRACT

Business processes have to manage variability in their execution,
e.g., to deliver the correct building permit in different municipal-
ities. This variability is visible in event logs, where sequences of
events are shared by the core process (building permit authorisa-
tion) but may also be specific to each municipality. To rationalise
resources (e.g., derive a configurable business process capturing all
municipalities’ permit variants) or to debug anomalous behaviour,
it is mandatory to identify to which variant a given trace belongs.
This paper supports this task by training Long Short Term Mem-
ory (LSTMs) and Gated Recurrent Units (GRUs) algorithms on two
datasets: a configurable municipality and a travel expenses work-
flow. We demonstrate that variability can be identified accurately
(> 87%) and discuss the challenges of learning highly entangled
variants.

CCS CONCEPTS

« Computing methodologies — Neural networks; - Software
and its engineering — Software reverse engineering; Soft-
ware product lines.

KEYWORDS

Configurable processes, Recurrent Neural Networks, Variability
Mining

ACM Reference Format:

Sophie Fortz, Paul Temple, Xavier Devroey, Patrick Heymans, and Gilles
Perrouin. 2021. VaryMinions: Leveraging RNNs to Identify Variants in Event
Logs. In Proceedings of the 5th International Workshop on Machine Learning
Techniques for Software Quality Evolution (MaLTESQuE °21), August 23, 2021,
Athens, Greece. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3472674.3473980

MaLTESQuE 21, August 23, 2021, Athens, Greece

© 2021 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
the 5th International Workshop on Machine Learning Techniques for Software Quality
Evolution (MaLTESQuE °21), August 23, 2021, Athens, Greece, https://doi.org/10.1145/
3472674.3473980.

Paul Temple
paul.temple@unamur.be
PReCISE, NaD], Faculty of Computer
Science, University of Namur
Namur, Belgium

Xavier Devroey
x.d.m.devroey@tudelft.nl
Delft University of Technology
Delft, Netherlands

Gilles Perrouin
gilles.perrouin@unamur.be

PReCISE, NaD], Faculty of Computer

Science, University of Namur
Namur, Belgium

1 INTRODUCTION

Business processes capture the activities of every profit or non-
profit, public or private organisation, coordinating humans and
software to collectively deliver value. As organisations evolve, new
needs appear: e.g., covering electric scooters for an insurance com-
pany or handling a change in the law about reimbursing travel
expenses at the university. These needs lead to the emergence of
process variants, differing in their control flow or performance while
having commonalities with the original processes. We consider pro-
cess executions stored in event logs, where an event trace (or trace)
is an ordered sequence of events. To debug an anomalous process
execution or to explore process refactoring opportunities, it is nec-
essary to identify which variant(s) may have produced a given
trace. Existing variant analysis [42] techniques do not answer this
question but rather cover the inverse operation: i.e., focusing on
the differences between identified variants. In this paper, we train
Recurrent Neural Networks (RNNs) [37] with different hyperpa-
rameters (loss and activation functions among others) to predict
the candidate variant(s) that could produce a given event trace.

We provide the following contributions: (i) a first experiment
of the usage of Long Short Term Memory (LSTMs) [22] and Gated
Recurrent Units (GRUs) [8], two RNN architectures, on two datasets
(municipality management and travel expenses) showing that we
can identify the variant(s) producing an event trace with a high ac-
curacy (> 87%) and that there is no clear dominance of one network
architecture; (ii) a characterisation of the learning difficulty based
on behaviour shared amongst event traces; (iii) an implementation
of our approach exploiting the Tensorflow [12] and Keras [9] frame-
works, available in the replication package with the full results [16].

Section 2 introduces process mining, RNNs, and related work.
Section 3 presents the datasets, the experimental setup and results.
Section 4 discusses certain factors influencing our experiments such
as hyper-parameter variability and alternate labelling of variants.
Section 5 wraps up the paper.

2 BACKGROUND AND RELATED WORK

Process Variants. Nowadays, many organisations work with mul-
tiple (business) processes in parallel that can highly depend on
environmental and human factors. For instance, a business process

https://orcid.org/0000-0001-9687-8587
https://orcid.org/0000-0002-8276-0593
https://orcid.org/0000-0002-0831-7606
https://orcid.org/0000-0002-8431-0377
https://doi.org/10.1145/3472674.3473980
https://doi.org/10.1145/3472674.3473980
https://doi.org/10.1145/3472674.3473980
https://doi.org/10.1145/3472674.3473980

MaLTESQuE °21, August 23, 2021, Athens, Greece

can be influenced by regional laws, available resources, the size
of the organisation, etc. Most of them share common behaviour
meaning that for one general business process, one can define sev-
eral process variants. These similar processes can be grouped in
process lines or process families and then modelled using differ-
ent formalisms [36]. Analysing the specificities and commonalities
of these process variants allow scale economies and help practi-
tioners to improve the general business process, define new vari-
ants or maintain the existing ones [42]. For maintenance purposes,
behaviour can be examined to identify related problems. This be-
haviour may concern only a fraction of all the variants and knowing
them is crucial. However, event logs do not usually contain infor-
mation about the specific variant (or set of variants) which (could
have) produced the event traces. This can prevent practitioners to
reproduce the exact context of the problem that has to be fixed. This
forms the problem statement we are tackling in this paper.

LSTMs and GRUs. Recurrent neural networks (RNN) can predict
the next event in a trace or the final execution state [14, 41]. The
problem is when data sequences are long, traditional RNNs may
face the so-called vanishing or exploding gradient problem [21]:
weights from the first layers may rarely be adjusted since, during
learning, the back-propagation mechanism re-injects prediction
errors backwardly in the network starting from its output layer so
that it can ultimately provide the right outcome. Conversely, the
gradient can grow exponentially, yielding intractable computations.
Two RNN architectures are widely used when dealing with long
sequences and long-term dependencies: Long-Short Term Memory
(LSTM) [22] and Gated Recurrent Unit (GRU) [8]. LSTMs and GRUs
were designed to alleviate these gradient issues [10] by using gates
to keep specific long-term information in memory. They proved
their efficiency to deal with text classification [25, 29] for instance.
We consider traces as text, i.e., an ordered sequence of symbols
that follows a given grammar. This motivates the use of LSTMs
and GRUs for our purpose. Furthermore, these models have shown
encouraging results for activity prediction and classification over
process logs [20, 41].

Machine Learning for Process Monitoring and Mining. Ma-
chine learning has been notably used in business process monitor-
ing. For example, deep learning [33, 34] and auto-encoders [32] are
used to detect anomalies inside a process. In our case, we focus
on the classification task. Bobek et al. [6] offer recommendations
to configure variability-aware business processes at design time
with Bayesian Networks. Clustering techniques have also been
used [11, 30, 46] to perform classification tasks in an unsupervised
way, i.e., without knowing the classes to learn. Song et al. use di-
mensionality reduction techniques to improve trace clustering [39].
In our context, we want to specify the variants (i.e., the classes)
to learn. Finally, Hinkka et al. [20] aim at categorising traces into
classes, thanks to LSTMs and GRUs. However, their approach differ
on several points: (i) they define artificial classes, and (ii) they focus
on binary classification.

Engineering Configurable Processes. When trying to (retro)-
engineer configurable processes or even perform maintenance
and/or evolution, some of the reported techniques rely on grammar-
based or evolutionary algorithms, while others are machine learn-
ing (ML) oriented. The latter mostly consider tasks like clustering

Sophie Fortz, Paul Temple, Xavier Devroey, Patrick Heymans, and Gilles Perrouin

traces (e.g., [39]) or predicting the next events based on past ob-
servations (e.g., [41]). However, few techniques allow to retrieve a
complete configurable process from event logs. Some approaches
use genetic algorithms [7, 26], but they are limited to a small num-
ber of variants. Another option is to use (configurable) process
fragments to re-build the configurable model [4]. Sikal et al. pro-
pose a pattern for variability discovery during process mining, but
this approach is only methodological at this stage [38].

Machine Learning for Variability-intensive Systems. While
there is a growing interest to employ ML techniques for VIS engi-
neering [35], to the best of our knowledge, classification of variants
from behavioural traces using ML techniques has not been studied.
ML approaches have been used to support performance prediction
and optimisation, e.g., [1, 5, 24] or to improve the search for good
and acceptable configurations e.g., [31, 43]. If some of these works
also target classification tasks, they consider configurations as the
main entry point of their approaches and do not take the behaviour
of the studied systems into account. ML also support defect predic-
tion [2, 40]. In particular, Striider et al. demonstrated that artificial
neural networks were suitable for that task [40]. While ML can sup-
port VIS engineering, the converse, i.e., applying variability-aware
techniques to neural networks is also true. For example, Ghamizi et
al. developed a framework to explore variability amongst different
neural networks architectures and automated search-based tech-
niques to find the optimal one for a given task [17, 18]. We built
our work on the analogy between behavioural execution traces
and text to choose RNNs as a relevant way to deal with temporal
sequences. Natural Language Processing (NLP) is also increasingly
used to extract variants from text specifications. Li et al. conducted
a systematic literature review of this topic [27]. None of the re-
viewed works used RNNs but other classification models (decision
trees, association rules, etc.). Recently, Arganese et al. investigated
ambiguity in natural requirements as variability points [3] but here
also, reasoning is more at the syntactical level (words) rather than
on the analysis of complete sequences.

3 EVALUATION

Our evaluation addresses the following research questions: RQ1
How accurately can we identify process variants based on their traces?,
studying the applicability of our approach; and RQ2 What is the
performance of LSTMs versus that of GRUs for process traces classifi-
cation?, identifying the most suited family of classifiers.

3.1 Datasets

We use two datasets: the 2015 and 2020 editions of the Business
Process Intelligence Challenge (BPIC). Each one contains event logs,
describing different executions of configurable processes: BPIC15
(DS1) [45] represents building permit applications in five munici-
palities, each one corresponding to a process variant; and BPIC20
(DS2) [44] gathers data from the travel reimbursement process at
the Eindhoven University of Technology (TU/e), where variants
correspond to different kind of documents to be managed.

Preprocessing. The original datasets contain only valid and com-
plete traces, together with other information. We prune the logs
to keep only the process variant id, the trace id and the sequence
of events. To cope with different trace lengths, we apply padding

VaryMinions: Leveraging RNNs to Identify Variants in Event Logs

Table 1: Overview of the preprocessed datasets used in our
experiments. Class-specific metrics (cols 3-5) represent: (i)
the number of traces per class, (ii) the percentage of traces
assigned specifically to this variant in the dataset, and (iii)
the percentage of traces shared by this variant and at least
an other one.

’ Dataset ’ Class Id ‘ # Traces % Vé]x)rlant—.spemﬁc % ShaAr o
ehaviour behaviour
Munic. 1 1170 99.658 0.342
DS1 Munic. 2 828 99.638 0.362
(BPIC15) Munic. 3 1350 99.778 0.222
5,542 traces Munic. 4 1049 99.905 0.095
Munic. 5 1153 99.827 0.173
Int’l Decl. 753 30.013 69.987
DS2 Dom. Decl. 99 100 0.0
(BPIC20) Permit Req. 1478 64.344 35.656
2,074 traces Prepaid 202 90.099 9.901
Req. For Pay. 89 77.528 22.472

(i.e., filling traces with other meaningless events and using a mask
to know where the processing should stop). Trace duplicates are
removed and since multiple variants can produce the same trace,
we encode the variants into a binary vector (where the size matches
the number of variants) that serve as a label. A value of one at
the i-th index of the vector denotes that we observed at least once
the trace associated to variant i. Traces that are associated to all
variants have thus a vector full of ones. In the end, each trace is
associated with one or more variants (i.e., classes) and we expect
the RNN models to learn these associations to predict the variant(s)
for an unlabelled trace.

Description As described in Table 1, DS1 contains 5, 542 traces
after preprocesssing. The five process variants are fairly equally
represented since they contain 1,108 traces on average, with a
minimum of 828 and a maximum of 1, 350. DS1 is therefore well
balanced. DS2 contains 2,074 traces after preprocessing, with 5
process variants. The least and most represented process variants
contain respectively 89 and 1,478 traces, with an average of 415
traces per variant. Therefore, the dataset is imbalanced, suggesting
it is more difficult to learn accurately.

To better characterise the learning complexity, Table 1 shows
the number of traces per class and the overlap (i.e., percentage
of variant-specific and shared behaviour) between classes. The
number of traces provides a first indication of the learning difficulty:
more traces generally yield a more accurate network once trained.
DS1 contains equally represented classes with limited overlaps
(< 0.5% in the last column), while DS2 is less balanced in how
classes are represented and how they are interleaved, denoting a
shared behaviour between multiple variants. In particular, for DS2,
there is a big overlap between the International Declaration and the
Permit Request variants, and between the Prepaid Travel Cost and
the Request For Payment variants, while the Domestic Declaration
variant is completely separated.

3.2 RNN Configurations

Hyper-parameters values are described hereafter and in Table 2.

Classifiers. We chose to use GRU and LSTM as the two RNN
models to learn how to map traces to their corresponding process

MaLTESQuE °21, August 23, 2021, Athens, Greece

variants. Since the traces are short compared to text documents, we
decided to use networks with only one hidden layer, avoiding poten-
tial overfitting which may emerge from more complex structures
(e.g., auto-encoder) while offering satisfactory prediction abilities.

The network begins with an Embedding layer whose purpose is
to transform individual traces’ events into tensors which are the
primitive objects manipulated by RNNs. The output of the Embed-
ding layer is a set of tensors with weights that represent numerically
(and not alphabetically) events in traces. We consider that all events
are meaningful, as they are part of actual process executions. We
thus decided to keep them all in our representation. Then, the Em-
bedding layer is linked to the recurrent layer (i.e.,, our hidden layer)
in turn connected to the output layer of the RNN (i.e., a Dense layer
with as many neurons as classes to predict). Regarding the hidden
layer, we used bidirectional recurrent networks [37] exploiting past
and future information by reading forward and backward traces
in two independent passes. Such units have been demonstrated to
perform well for natural language processing applications, such
as attributing phonemes to spoken sequences [37]. In our case,
traces are fully available at training time and reading forward and
backward can help in grasping long term relations between events.

Units. We vary the number of units in the hidden layer. We have
considered the following numbers of units: 5, 10 and 30. These
numbers are commensurate with the maximum trace length.

Training set, batch size and epochs. We have additionally set
the following parameters: (i) the percentage of the datasets used
for training is set to 66% which is a common value in the ML
community, the remaining traces are used in the test set to assess
generalisation performances of the trained models; (ii) we set the
batch size to 128, which is adapted to the dataset size; (iii) We set
the number of epochs to 20 to avoid overfitting. In our preliminary
evaluations (between 10 and 50 epochs), a plateau was reached after
approximately 15 epochs. We finally set the number of epochs to
20, to allow for small increases in accuracy.

Activation functions. We experimented with different activation
functions. These are used at the level of units to provide an output
value for each neuron. For the hidden layer, we have used a Rectified
Linear Unit (ReLU) function that alleviates the vanishing gradient
problem. On the output layer, we have experienced with sigmoid
and hyperbolic tangent (tanh) activation functions.

Loss functions. Loss functions are used during training to opti-
mise the weights of the networks by back-propagating errors. We
have used three loss functions already available, namely Binary
Cross-Entropy (with and without logits) (respectively Bin-CE and
Bin-CE logits) and the Mean Squared Error (MSE). Logit is defined
as the inverse function of the sigmoid. These functions are used in a
variety of contexts!. We also used two others that we implemented
ourselves: a variant of Jaccard distance [23] (Weight_Jaccard), and
the Manhattan distance between two vectors. Because we might
have to assign a single trace to different process variants, we want
to compute element-wise differences between two vectors to ulti-
mately define a distance score. The Manhattan distance (sometimes
called L1 norm) computes the sum of absolute differences between

!Categorical Cross-Entropy prevents from associating multiple process variants to
one trace as it is usually used in conjunction with the softmax activation function.

MaLTESQuE °21, August 23, 2021, Athens, Greece

Table 2: Hyper-parameters settings

Hyper-parameter Considered values

Type of Classifier GRU, LSTM
Units 5, 10, 30
% Training Set 66%
Batch Size 128
Epochs 20

Activation Function sigmoid, tanh
Bin-CE, Bin-CE logits, MSE,

Weight_Jaccard, Manhattan

Loss Function

each element of the two vectors (i.e., in this case the process vari-
ants). The Jaccard distance assesses how equal elements of two
vectors are over their size. We have implemented a variant of the
Jaccard distance to cope with floating-point values generated by the
network. The Jaccard distance has been employed to evaluate trace
dissimilarity in variability-intensive systems (e.g., [13]). Further
discussions about the use and characteristics of these loss functions
are provided in Section 4.1.

3.3 Evaluation Setup

We evaluated 2 models X 3 #units X 1 %training set X 1 batch size X
1# epochs X 2 activation funtions x5 loss functions = 60 different
parameterisations of RNN. The time needed for a single execution
varies between 20 seconds and 2 minutes depending on the dataset.
We did not address class imbalance issues since even minority
classes were successfully classified by our models. We conducted
our experiments on three different laptops with similar hardware
(core i7 CPUs, 16GB of RAM). In total, we ran our 60 different
network configurations with 10 repetitions (to mitigate random
aspects) on the two different datasets resulting in 60X 10X 2 = 1, 200
runs and more than 22 hours of execution. All our scripts are written
in Python 3, with the Keras and Tensorflow frameworks for deep
learning. Our replication package is openly available [16].

3.4 Evaluation Results

Due to space constraints, Tables 3a and 3b only report the classifi-
cation performances of the 5 best and 5 worst configurations for
both datasets. The full results are available in our replication pack-
age. We observe that for DS1 and DS2 at least one of the networks
can achieve an accuracy of 88% (for DS1) and 87% (for DS2) with
a small standard deviation. Among the top 5 parameterisations,
two out of five use LSTM and three use GRU. The best results are
achieved with 30 units. Three pairs of loss and activation functions
seem to stand out: MSE with tanh, MSE with sigmoid and binary
cross-entropy (without logits values) with sigmoid.

Answer to RQ1 (accuracy): we were able to train RNNs
providing an accuracy above 87% for DS1 and DS2. The
following pairs of loss and activation functions stand out:
MSE with tanh, MSE with sigmoid and binary cross-entropy
combined with the sigmoid.

Regarding the five worst-performing parameterisations, we find
similar configurations for both datasets. For example, five configu-
rations (two for DS1 and three for DS2) show that the combination
of the sigmoid activation function and the binary cross-entropy

Sophie Fortz, Paul Temple, Xavier Devroey, Patrick Heymans, and Gilles Perrouin

Table 3: Averaged accuracy and standard deviations over 10
runs. Each line corresponds to a parameterisation of a RNN.

(a) Results for dataset BPIC15.

Model Loss Activ. Units | Mean Sd
LSTM MSE tanh 30 0.88249 | 0.00662
GRU Bin-CE sigmoid 30 0.87788 | 0.01041
GRU MSE tanh 30 0.87066 | 0.01096
GRU MSE sigmoid 30 0.86642 0.01323
LSTM MSE sigmoid 30 0.86265 | 0.01275

LSTM Manhattan sigmoid 30 0.21862 | 0.0169
LSTM | Bin-CE logits | sigmoid 30 0.21804 | 0.01106
GRU Bin-CE logits | sigmoid 30 0.21565 | 0.01526
GRU Manhattan sigmoid 30 0.21464 | 0.01558
LSTM Manhattan tanh 5 0.20308 | 0.03185

(b) Results for dataset BPIC20

Model Loss Activ. Units | Mean Sd
GRU Bin-CE sigmoid 30 0.87323 | 0.05122
GRU MSE sigmoid 30 0.83938 | 0.08053
LSTM MSE tanh 30 0.8296 0.05432
GRU MSE tanh 30 0.81034 0.0615
LSTM MSE sigmoid 30 0.7983 0.09539

GRU Bin-CE logits sigmoid 30 0.46501 | 0.00728
LSTM Bin-CE logits sigmoid 10 0.46133 | 0.01754
LSTM | Weight Jaccard tanh 10 0.43669 | 0.03958
LSTM Manhattan sigmoid 30 0.2772 | 0.19316
LSTM Bin-CE logits sigmoid 30 0.27224 | 0.18167

with logits is not a good fit. This is consistent with Keras documen-
tation,? logits should not be used when dealing with probability
distributions (e.g.,, sigmoid function). The Manhattan distance does
not provide good results with sigmoid (in two configurations for
DS1 and one for DS2). The number of units play a role in the per-
formance of the RNN. When we analyse all the results, a tanh
activation function combined with a low number of units generally
leads to lower accuracy. Similarly to the best configurations, using
GRU or LSTM does not seem to influence the results.

Answer to RQ2 (classifiers): In the top combinations of
both DS1 and DS2, performance of the LSTM and GRU varies
significantly (e.g., from 79% to 88% for GRU) and are mixed,
with no absolute winner. Therefore, we cannot conclude on
the prevalence of GRUs over LSTMs for these two datasets.

4 DISCUSSION AND FUTURE WORK
4.1 Hyper-parameter Variability

The use of RNNs in this context requires to carefully dimension the
network and consider many configurations that can influence the
classification performances. We present them below.

Loss functions. We use the mean squared error which is used
when tackling a regression problem. In this case, the output of the
network is not a class label anymore but a real value and the goal of
the regression is to minimise the difference between the expected
values and the predicted ones. Using such kind of formulation can
be surprising as we initially tackle a classification problem (i.e.,
does a trace belong or not to one or more variants?) but the output

Zhttps://keras.io/api/losses/probabilistic_losses/#binarycrossentropy-function

https://keras.io/api/losses/probabilistic_losses/#binarycrossentropy-function

VaryMinions: Leveraging RNNs to Identify Variants in Event Logs

of our network are probabilities of belonging to variants. In this
sense, we can argue that the tackled problem is slightly turned into
a regression problem. This would explain the surprisingly good
results that we obtained with this loss function.

The choice of the loss function is therefore extremely difficult
since multiple aspects must be taken into account: the formalisation
of the problem (e.g., single or multi-label, regression or classifica-
tion) or the way to compute errors. Even when trying to choose
carefully the loss function according to these points, our results
indicate that the MSE does surprisingly well while the initial setting
suggests that it is not an appropriate measure. Given the importance
of aloss function on the observed performance, experimenting with
further loss functions appears promising. For example, the focal
loss [28], which penalises more misclassified instances than well-
classified ones, is a perspective that we aim to follow.

Complexity of the neural networks We argued that learning
trace-to-variant mapping was feasible due to the number of traces
w.r.t. the limited number of process variants. Generally, the chal-
lenge lies in the fact that having temporal sequences forces de-
pendencies between elements that are usually learned separately.
Therefore, we observed that network architectures with more units
provided better performance. Besides, we suppose that deeper RNNs
(i.e., increasing the number of hidden layers) may have a positive
impact. Adding more layers increases the complexity of the model
(as well as required resources needed for training), but allows for a
more accurate mapping between traces and variants. Yet, the risk
of overfitting must not be neglected. In the future, we will also
consider architectures such as auto-encoders to produce a com-
pact intern representation of traces, that could be more efficient in
discriminating them according to the process variants. Similarly
to other application domains (e.g., image or speech processing),
learning more compact representations could rely on new feature
descriptors instead of only considering events of a trace.

4.2 Variant-based vs. Option-based Labelling

Our results indicate that applying classification techniques on a
variant-based approach (i.e., identify the variants producing a spe-
cific trace) using Natural Language Processing (NLP) [3, 27] is
promising. However, it has a major drawback: a variant-based ap-
proach requires enumerating all the variants to produce the training
dataset. If in our evaluation, the number of variants was limited, the
well-known combinatorial explosion problem may prevent us to
apply these techniques to larger configurable processes like, for in-
stance, continuous integration workflows with hundreds of options,
leading to an intractable number of possible variants.

One future possibility to address this limitation is to work on
data representation. Indeed, a variant is formed by a combination of
(Boolean) options, corresponding to a configuration of the system.
If variants cannot be enumerated, these options can. In this case,
we need a new representation which can depict the three states
of each option: activated, deactivated or undetermined (i.e., the
presence of the option is not relevant for the current context). The
neural network will learn a partial configuration allowing for a
more fine-grained mapping. This would be useful to locate with
more precision a combination of options yielding a given anomalous

MaLTESQuE °21, August 23, 2021, Athens, Greece

event trace. Such learned models may be used in fault localisation
and repair techniques [15].

4.3 Threats to Validity

Internal validity. We selected LTSMs and GRUs both for their
ability to deal with temporal sequences and to evade the vanishing
gradient issue. Due to the lack of computing resources, we could
not apply automated tuning techniques; however, we evaluated 60
combinations of RNNs for both datasets. Since it is impossible to
provide exhaustive coverage of the hyperparameter space, we may
have missed some relevant parameterisations.

External Validity. Our initial results may not generalise to all
configurable systems as we only considered process variants. We
chose datasets having very different characteristics and based our
perspectives on more general variability-aware consideration which
we think provide useful insights outside the process modelling
community. In the future, we would like to extend our work to
different kinds of execution logs, issued from variability-intensive
open-source software such as JHipster [19].

5 CONCLUSION

In this paper, we used LSTMs and GRUs to map event traces to
their corresponding process variants, a prerequisite to perform pro-
cessing debugging and refactoring activities. Our experiments [16]
demonstrated that it is possible to learn mappings with an accuracy
greater than 87% on two typical business process logs. Our future
plans include the design of dedicated loss functions, the exploration
of different neural architectures, and the adaptation of the approach
to other application domains, such as variability-intensive systems.

ACKNOWLEDGEMENTS

Sophie Fortz is supported by the FNRS via a FRIA grant. Paul Temple
is supported by the EOS VeriLearn project (FNRS Grant O05518F-
RGO3). Gilles Perrouin is an FNRS Research Associate. Xavier De-
vroey is supported by the Vici “TestShift” project (No. VI1.C.182.032)
from the Dutch Science Foundation NWO.

REFERENCES

[1] Juliana Alves Pereira, Mathieu Acher, Hugo Martin, and Jean-Marc Jézéquel. 2020.
Sampling Effect on Performance Prediction of Configurable Systems: A Case
Study. In Proceedings of the ACM/SPEC International Conference on Performance
Engineering. ACM, 277-288. https://doi.org/10.1145/3358960.3379137

[2] Benoit Amand, Maxime Cordy, Patrick Heymans, Mathieu Acher, Paul Temple,
and Jean-Marc Jézéquel. 2019. Towards learning-aided configuration in 3D
printing: Feasibility study and application to defect prediction. In Proceedings
of the 13th International Workshop on Variability Modelling of Software-Intensive
Systems. ACM, 1-9. https://doi.org/10.1145/3302333.3302338

[3] Eleonora Arganese, Alessandro Fantechi, Stefania Gnesi, and Laura Semini. 2020.
Nuts and Bolts of Extracting Variability Models from Natural Language Require-
ments Documents. In Integrating Research and Practice in Software Engineering.
Springer, 125-143. https://doi.org/10.1007/978-3-030-26574-8_10

[4] Nour Assy, Nguyen Ngoc Chan, and Walid Gaaloul. 2015. An automated approach

for assisting the design of configurable process models. IEEE transactions on

services computing 8, 6 (2015), 874-888. https://doi.org/10.1109/TSC.2015.2477815

Davide Bacciu, Stefania Gnesi, and Laura Semini. 2015. Using a Machine Learning

Approach to Implement and Evaluate Product Line Features. In Proceedings 11th

International Workshop on Automated Specification and Verification of Web Systems,

WWYV 2015, Oslo, Norway, 23rd June 2015 (EPTCS), Maurice H. ter Beek and Alberto

Lluch-Lafuente (Eds.), Vol. 188. EPTCS, 75-83. https://doi.org/10.4204/EPTCS.

188.8

[5

https://doi.org/10.1145/3358960.3379137
https://doi.org/10.1145/3302333.3302338
https://doi.org/10.1007/978-3-030-26574-8_10
https://doi.org/10.1109/TSC.2015.2477815
https://doi.org/10.4204/EPTCS.188.8
https://doi.org/10.4204/EPTCS.188.8

MaLTESQuE °21, August 23, 2021, Athens, Greece

(6]

(71

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19

[20

[21]

[22

[23

[24

[25]

[26]

[27

Szymon Bobek, Mateusz Baran, Krzysztof Kluza, and Grzegorz] Nalepa. 2013.
Application of Bayesian Networks to Recommendations in Business Process
Modeling.. In AIBP@ AI" IA. Springer, 41-50.

Joos CAM Buijs, Boudewijn F van Dongen, and Wil MP van der Aalst. 2013.
Mining configurable process models from collections of event logs. In Business
process management. Springer, 33-48. https://doi.org/10.1007/978-3-642-40176-
3.5

Kyunghyun Cho, Bart van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, 1724-1734. https:
//doi.org/10.3115/v1/D14-1179

Francois Chollet et al. 2015. Keras. https://keras.io.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
In NIPS 2014 Workshop on Deep Learning, December 2014.

Jochen De Weerdt, Seppe KLM vanden Broucke, Jan Vanthienen, and Bart Bae-
sens. 2012. Leveraging process discovery with trace clustering and text mining
for intelligent analysis of incident management processes. In IEEE Congress on
Evolutionary Computation. IEEE, 1-8. https://doi.org/10.1109/CEC.2012.6256459
TensorFlow Developers. 2021. TensorFlow. https://doi.org/10.5281/zenodo.
4758419

Xavier Devroey, Gilles Perrouin, Axel Legay, Pierre-Yves Schobbens, and Patrick
Heymans. 2016. Search-based similarity-driven behavioural SPL testing. In Pro-
ceedings of the Tenth International Workshop on Variability Modelling of Software-
intensive Systems. 89-96.

Joerg Evermann, Jana-Rebecca Rehse, and Peter Fettke. 2017. Predicting process
behaviour using deep learning. Decision Support Systems 100 (2017), 129-140.
https://doi.org/10.1016/j.dss.2017.04.003

Dirk Fahland and Wil M.P. van der Aalst. 2015. Model repair — aligning process
models to reality. Information Systems 47 (2015), 220-243. https://doi.org/10.
1016/j.i5.2013.12.007

Sophie Fortz, Paul Temple, Xavier Devroey, Patrick Heymans, and Gilles Perrouin.
2021. VaryMinions. https://doi.org/10.5281/zenodo.5083334

Salah Ghamizi, Maxime Cordy, Mike Papadakis, and Yves Le Traon. 2019. Auto-
mated search for configurations of convolutional neural network architectures. In
Proceedings of the 23rd International Systems and Software Product Line Conference-
Volume A. ACM, 119-130. https://doi.org/10.1145/3336294.3336306

Salah Ghamizi, Maxime Cordy, Mike Papadakis, and Yves Le Traon. 2020. Fea-
tureNET: diversity-driven generation of deep learning models. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering: Companion
Proceedings. ACM, 41-44. https://doi.org/10.1145/3377812.3382153

Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin,
and Benoit Baudry. 2019. Test them all, is it worth it? Assessing configuration
sampling on the JHipster Web development stack. Empirical Software Engineering
24,2 (2019), 674-717. https://doi.org/10.1007/s10664-018-9635-4

Markku Hinkka, Teemu Lehto, Keijo Heljanko, and Alexander Jung. 2018. Classify-
ing process instances using recurrent neural networks. In International Conference
on Business Process Management. Springer, 313-324. https://doi.org/10.1007/978-
3-030-11641-5_25

Sepp Hochreiter. 1998. The vanishing gradient problem during learning recurrent
neural nets and problem solutions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems 6, 02 (1998), 107-116. https://doi.org/10.1142/
50218488598000094

Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780. https://doi.org/10.1162/nec0.1997.9.8.1735
Paul Jaccard. 1901. Etude comparative de la distribution florale dans une portion
des Alpes et des JurA. Bulletin de la Société Vaudoise des Sciences Naturelles 37
(1901).

Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, and Sven Apel.
2020. The interplay of sampling and machine learning for software performance
prediction. IEEE Software 37, 4 (2020), 58-66. https://doi.org/10.1109/MS.2020.
2987024

Kamran Kowsari, Donald E Brown, Mojtaba Heidarysafa, Kiana Jafari Meimandi,
Matthew S Gerber, and Laura E Barnes. 2017. Hdltex: Hierarchical deep learning
for text classification. In 16th IEEE international conference on machine learning
and applications (ICMLA). IEEE, 364-371. https://doi.org/10.1109/ICMLA.2017.0-
134

Marcello La Rosa and Marlon Dumas. 2008. Configurable process models: how
to adopt standard practices in your how way? BPTrends Newsletter (2008).

Yang Li, Sandro Schulze, and Gunter Saake. 2017. Reverse engineering variability
from natural language documents: A systematic literature review. In Proceedings
of the 21st International Systems and Software Product Line Conference-Volume A.

Sophie Fortz, Paul Temple, Xavier Devroey, Patrick Heymans, and Gilles Perrouin

[28

[29

[30

(31]

(32

[33

[34

[36

[37

[38

@
20,

[40

[41

[42

"~
&

(44

[45

[46

ACM, 133-142. https://doi.org/10.1145/3106195.3106207
Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. 2020.
Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and

Machine Intelligence 42, 2 (2020), 318-327. https://doi.org/10.1109/TPAMI.2018.
2858826

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016. Recurrent Neural Network
for Text Classification with Multi-Task Learning. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence (IJCAI'16). AAAI
Press, 2873-2879. https://doi.org/10.5555/3060832.3061023

Ronny S Mans, MH Schonenberg, Minseok Song, Wil MP van der Aalst, and
Piet JM Bakker. 2008. Application of process mining in healthcare-a case study
in a dutch hospital. In International joint conference on biomedical engineering
systems and technologies. Springer, 425-438. https://doi.org/10.1007/978-3-540-
92219-3_32

Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. 2017. Using bad
learners to find good configurations. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany,
September 4-8, 2017, Eric Bodden, Wilhelm Schéfer, Arie van Deursen, and Andrea
Zisman (Eds.). ACM, 257-267. https://doi.org/10.1145/3106237.3106238

Hoang Thi Cam Nguyen, Suhwan Lee, Jongchan Kim, Jonghyeon Ko, and Marco
Comuzzi. 2019. Autoencoders for improving quality of process event logs. Expert
Systems with Applications 131 (2019), 132-147. https://doi.org/10.1016/j.eswa.
2019.04.052

Timo Nolle, Alexander Seeliger, and Max Miihlhduser. 2018. BINet: multi-
variate business process anomaly detection using deep learning. In Interna-
tional Conference on Business Process Management. Springer, 271-287. https:
//doi.org/10.1007/978-3-319-98648-7_16

Timo Nolle, Alexander Seeliger, Nils Thoma, and Max Miihlhéduser. 2020.
DeepAlign: Alignment-Based Process Anomaly Correction Using Recurrent
Neural Networks. In International Conference on Advanced Information Systems
Engineering. Springer, 319-333. https://doi.org/10.1007/978-3-030-49435-3_20
Juliana Alves Pereira, Hugo Martin, Paul Temple, and Mathieu Acher. 2020. Ma-
chine Learning and Configurable Systems: A Gentle Introduction. In Proceedings
of the 24th ACM Conference on Systems and Software Product Line: Volume A (SPLC
"20). ACM, Article 40, 1 pages. https://doi.org/10.1145/3382025.3414976
Marcello La Rosa, Wil MP Van Der Aalst, Marlon Dumas, and Fredrik P Milani.
2017. Business process variability modeling: A survey. Comput. Surveys 50, 1
(2017), 1-45. https://doi.org/10.1145/3041957

Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural
networks. IEEE transactions on Signal Processing 45, 11 (1997), 2673-2681.
https://doi.org/10.1109/78.650093

Rabab Sikal, Hanae Sbai, and Laila Kjiri. 2018. Configurable process mining:
variability Discovery Approach. In IEEE 5th International Congress on Information
Science and Technology (CiSt). IEEE, 137-142. https://doi.org/10.1109/CIST.2018.
8596526

Minseok Song, H Yang, Seyed Hossein Siadat, and Mykola Pechenizkiy. 2013.
A comparative study of dimensionality reduction techniques to enhance trace
clustering performances. Expert Systems with Applications 40, 9 (2013), 3722 —
3737. https://doi.org/10.1016/j.eswa.2012.12.078

Stefan Striidder, Mukelabai Mukelabai, Daniel Striiber, and Thorsten Berger. 2020.
Feature-oriented defect prediction. In Proceedings of the 24th ACM Conference
on Systems and Software Product Line: Volume A. ACM, 1-12. https://doi.org/10.
1145/3382025.3414960

Niek Tax, Ilya Verenich, Marcello La Rosa, and Marlon Dumas. 2017. Predictive
Business Process Monitoring with LSTM Neural Networks. In Advanced Infor-
mation Systems Engineering. Springer, 477-492. https://doi.org/10.1007/978-3-
319-59536-8_30

Farbod Taymouri, Marcello La Rosa, Marlon Dumas, and Fabrizio Maria Maggi.
2021. Business process variant analysis: Survey and classification. Knowledge-
Based Systems 211 (2021), 106557. https://doi.org/10.1016/j.knosys.2020.106557
Paul Temple, Mathieu Acher, Gilles Perrouin, Battista Biggio, Jean-Marc Jézéquel,
and Fabio Roli. 2019. Towards quality assurance of software product lines with
adversarial configurations. In Proceedings of the 23rd International Systems and
Software Product Line Conference-Volume A. ACM, 277-288. https://doi.org/10.
1145/3336294.3336309

Boudewijn van Dongen. 2020. BPI Challenge 2020. https://doi.org/10.4121/uuid:
52fb97d4-4588-43¢9-9d04-3604d4613b51

B.F. (Boudewijn) van Dongen. 2015. BPI Challenge 2015. https://doi.org/10.4121/
uuid:31a308ef-c844-48da-948c-305d167a0ec1

Angel Jesus Varela-Vaca, José A Galindo, Belén Ramos-Gutiérrez, Maria Teresa
Goémez-Lopez, and David Benavides. 2019. Process mining to unleash variability
management: discovering configuration workflows using logs. In Proceedings of
the 23rd International Systems and Software Product Line Conference-Volume A.
ACM, 265-276. https://doi.org/10.1145/3336294.3336303

https://doi.org/10.1007/978-3-642-40176-3_5
https://doi.org/10.1007/978-3-642-40176-3_5
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://keras.io
https://doi.org/10.1109/CEC.2012.6256459
https://doi.org/10.5281/zenodo.4758419
https://doi.org/10.5281/zenodo.4758419
https://doi.org/10.1016/j.dss.2017.04.003
https://doi.org/10.1016/j.is.2013.12.007
https://doi.org/10.1016/j.is.2013.12.007
https://doi.org/10.5281/zenodo.5083334
https://doi.org/10.1145/3336294.3336306
https://doi.org/10.1145/3377812.3382153
https://doi.org/10.1007/s10664-018-9635-4
https://doi.org/10.1007/978-3-030-11641-5_25
https://doi.org/10.1007/978-3-030-11641-5_25
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/MS.2020.2987024
https://doi.org/10.1109/MS.2020.2987024
https://doi.org/10.1109/ICMLA.2017.0-134
https://doi.org/10.1109/ICMLA.2017.0-134
https://doi.org/10.1145/3106195.3106207
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.5555/3060832.3061023
https://doi.org/10.1007/978-3-540-92219-3_32
https://doi.org/10.1007/978-3-540-92219-3_32
https://doi.org/10.1145/3106237.3106238
https://doi.org/10.1016/j.eswa.2019.04.052
https://doi.org/10.1016/j.eswa.2019.04.052
https://doi.org/10.1007/978-3-319-98648-7_16
https://doi.org/10.1007/978-3-319-98648-7_16
https://doi.org/10.1007/978-3-030-49435-3_20
https://doi.org/10.1145/3382025.3414976
https://doi.org/10.1145/3041957
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/CIST.2018.8596526
https://doi.org/10.1109/CIST.2018.8596526
https://doi.org/10.1016/j.eswa.2012.12.078
https://doi.org/10.1145/3382025.3414960
https://doi.org/10.1145/3382025.3414960
https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1016/j.knosys.2020.106557
https://doi.org/10.1145/3336294.3336309
https://doi.org/10.1145/3336294.3336309
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.1145/3336294.3336303

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Evaluation
	3.1 Datasets
	3.2 RNN Configurations
	3.3 Evaluation Setup
	3.4 Evaluation Results

	4 Discussion and Future Work
	4.1 Hyper-parameter Variability
	4.2 Variant-based vs. Option-based Labelling
	4.3 Threats to Validity

	5 Conclusion
	References

