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Abstract. Software Product Lines (SPLs) are families of similar soft-
ware products built from a common set of features. As the number of
products of an SPL is potentially exponential in the number of its fea-
tures, analysing SPLs is harder than for single software. In this invited
paper, we synthesise six years of efforts in alleviating SPL verification
and testing issues. To this end, we introduced Featured Transition Sys-
tems (FTS) as a compact behavioural model for SPLs. Based on this for-
malism, we designed verification algorithms and tools allowing to check
temporal properties on FTS, thereby assessing the correct behaviour of
all the SPL products. We also used FTS to define test coverage and
generation techniques for model-driven SPLs. We also successfully em-
ployed the formalism in order to foster mutation analysis. We conclude
with future directions on the development of FTS for SPL analysis.

1 The Software Product Line Challenge

Software product line engineering (SPLE) is an increasingly popular development
paradigm for highly customizable software. SPLE allows companies to achieve
economies of scale by developing several similar systems together.

SPLE is now widely embraced by the industry, with applications in a variety
of domains ranging from embedded systems (e.g., automotive, medical), system
software (e.g., operating systems) to software products and services (e.g., e-
commerce, finance). However, the benefits of SPLE come at the cost of added
complexity: the (potentially large) number of systems to be considered at once,
and the need for managing their variability in all activities and artifacts.

This added complexity also applies to the verification of the products’ be-
haviour. A simple but cumbersome approach for product line verification consists
in applying classical model checking algorithms [37] on each individual product
of the family. However, for an SPL with n features, this would lead to 2n calls of
the model checking algorithm. This solution is clearly unsatisfactory and should
be replaced by new approaches that take the variability within the family into
account. Those approaches often rely on compact mathematical representations
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Fig. 1. Several variants of a vending machine.

on which a specialized model checking algorithm can be applied. The main dif-
ficulties are (1) to develop such a model checking algorithm, and (2) to propose
mathematical structures that are compact and flexible enough to take the vari-
ability of the family and its specification into account.

In [10], we introduced Featured Transition Systems (FTS), an extension of
transition systems used to represent the behaviour of all the products of an SPL
in a single compact structure. We also showed how this representation can be
exploited to perform model checking of product lines in an efficient way. In the
rest of this paper, we briefly re-introduce FTS and summarize existing model
checking algorithms for them. We also briefly show that FTS can be exploited
to perform testing of software product lines. This is only a brief summary of
the work that is presented at SOFSEM’17. More details can be found in our
different papers cited below. Finally, we have to highlight that related work on
product-line verification is vast and varied. To the best of our knowledge, effort
in compiling related work on this topic can be found in the theses of Classen [5]
and Cordy [11]. Beohar et al. recently compared the expressiveness of different
SPL formalisms and found that FTS is the most expressive one [4].

2 Featured Transition Systems

Let us introduce Featured Transition Systems with a classical vending machine
example. The example is a short version of the one we presented in [8]. In its
basic version, the vending machine takes a coin, returns change, serves soda, and
eventually opens a compartment so that the customer can take her soda, before
closing it again. This behaviour is modelled by the transition system shown in
Figure 1(a). There exist other variants of this vending machine. As an example,
consider a machine that also sells tea, shown in Figure 1(b). Another variant lets
the customer cancel her purchase after entering a coin, see Figure 1(c). A fourth
one offers free drinks and has no closing beverage compartment, see Figure 1(d).
This variability hints that the vending machines could be developed as an SPL,
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Fig. 2. FD for the vending machines of Figure 1.
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Fig. 3. FTS of the vending machine.

of which four features can be already identified: the sale of soda, the sale of tea,
the ability to cancel a purchase and the ability to offer drinks for free.

By combining these features differently, yet other vending machines can be
obtained. However, not every combination of features yields a valid system (e.g.,
a vending machine should at least sell a beverage). One can use variability models
to represent the sets of valid products. In SPLE, feature diagrams [30, 36] are
the most common incarnation of variability models. The feature diagram for
the vending machine SPL is shown in Figure 2. This feature digram formally
describes a set of vending machines; twelve of them. A model of the behaviour
of a small example such as this would already require twelve, largely identical,
behavioural descriptions, four of which are shown in Figure 1.

FTS are meant to represent the behaviour of the myriad instances of an
SPL in a single transition system. In fact, the main ingredient of FTS is to
associate transitions with features that condition their existence. Consider again
our vending machine example. Figures 1(b) and 1(c) show the impact of adding
features Tea and CancelPurchase to a machine serving only soda: both add two
transitions. FreeDrinks replaces Àpay−−→Áchange−−−−→Â by a single transition Àfree−−−→Â
and Æopen−−−→Çclose−−−→À by Ætake−−−→À. The FTS of the whole vending machine SPL is
given in Figure 3. The feature label of a transition is shown next to its action
label, separated by a slash. In these labels (and by conveniency in the rets of this
paper), we use the abbreviated feature names from Figure 2. The transitions are
coloured in the same way as the features in Figure 2.
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3 Verifying SPLs with FTS

Over the years, we have developed a series of model checking algorithms that
exploit the compact structure of FTS to verify sets of requirements on product
lines. We first recap the meaning for product line requirements, and then briefly
summarise our results.

3.1 What are Product Lines requirements?

The requirements of an SPL are requirements imposed over a subset of its prod-
ucts. As such, they can be represented as a formula in temporal logic preceded
by a Boolean formula over the SPL features, which represents the set of prod-
ucts whose behaviour must satisfy the temporal formula. As an example, in
single systems one can check that “the system can never reach a bad state”.
The product-line counterpart of this property would be: “all valid products can
never reach a bad state”. The objective of an SPL verification algorithm is thus
to discover all products that do not satisfy a given property, and a proof of viola-
tion (i.e. a counterexample) for each of them. One can also extend our queries to
quantitative, real-time or even stochastic requirements. For example, the single-
product property “is the probability to satisfy the safety requirement greater
than 0.5” becomes “what are the products for which the probability to satisfy
the safety requirement is greater than 0.5” in the product-line realm.

3.2 How to exploit the FTS structure to model check requirements:
a sketch

Let us now illustrate how one can exploit the FTS structure to reason on a
classical verification problem: finding all the reachable states. Consider again
the vending machine FTS of Figure 3. State À is an initial state, and thus
reachable by all products. From there, the transition Àpay−−→Á can only be fired
by products in [[v∧¬f ]]. Transition Áchange−−−−→Â can be fired for all products in [[v]],
and so state Â is reachable by the same products as state Á. Proceeding in this
way, we compute in one step the reachability relation of s for all the products.
The presence of the feature diagrams permits us to ignore products that are not
part of the product line. We also observe that if we find a state s reachable by
a set of products A and discover later that s can also be reached by a set of
product B ⊆ A, then it is enough to consider the superset A.

Considering sets of products during the verification makes us move from
an enumerative approach to a product line approach, which benefits from the
common behaviour of the products. Interestingly, the theoretical complexity of
our algorithms is higher than that of their enumerative counterpart. However,
due to the structure of the FTS, experiments show that in practice the former
is faster (see, e.g., [8] for extended comparisons). Observe that the efficiency of
our approach also rely on efficient representation of sets of products. In [8], we
showed that the best way is to represent them with Boolean formulas. We also
showed that our approach remains efficient in quantitative settings, e.g. when
properties are real-time [15] or in case the features are not Boolean [16].
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3.3 Summary of our results

Let us now briefly summarize the results we have obtained over those six last
years. Our first algorithms have mainly focused on extending model checking
properties of Linear Temporal Logic (LTL) to FTS [8, 10]. We then moved to
CTL and symbolic algorithms [9]. We have then proposed extensions of FTS
that allow us to reason on more quantitative aspect of systems. This includes
real time to specify timing constraints in a timed automaton fashion [15], and
probabilities that allows us to make quantitative hypotheses via a combination
of FTS and Markov chains [34]. Behavioural relations such as simulation were
also extended to FTS. There, one tries to compute the set of products for which
two states are in simulation [12]. This allows us, among many other possibilities,
to define a CEGAR-based abstraction for FTS [14]. In all those algorithms, the
root has always been to efficiently represents pairs of (state,product).

Legend:
a a
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Numeric Features => AST

Fig. 4. Features of Proveline

Tool Some of our results have been implemented in ProVeLines: a product line
of verification tools for QA on different types of product lines3. The structure
of the tool is that of an SPL, whose corresponding feature diagram is presented
in Figure 4 (taken from [17]). One can observe that the tool provides several
opportunities to describe both systems (discrete, real-time) and requirements
(reachability, simulation, LTL). The constraints on the top left of Figure 4 in-
forms us that using the real-time specification for systems disables the possibility
to use LTL and simulation algorithms. Otherwise, this would require the use of
dense-time verification algorithms.

Any ProVeLines variant requires at least two artefacts from the user: an
FD and an fPromela model. For the former, we use TVL [6, 16], one of the
latest incarnations of FDs, due to some of its advantages: high expressiveness,
formal semantics and tool support. fPromela is a feature-oriented extension of
Promela [27], which we defined as a high-level language on top of FTS. An
fPromela model thus describes the behaviour of all the products defined by the
FD [7,16].

3 Note that prototype tools exist for other results we developed.
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4 SPL Testing with FTS

FTSs, as concise models of SPLs behaviours, can also support model-based test-
ing (MBT) activities. In our research we investigated two directions: i) coverage
and ii) synergies between SPL testing and mutation analysis.

4.1 SPL Coverage Analysis

Extending Usual Coverage Criteria. Since FTS are extensions of tran-
sition systems, a natural research direction was to consider “usual” coverage
criteria (e.g., all-states, all-transitions) for product-line test generation [21]. In
our work, we modelled test cases in terms of sequences of actions. There are
thus abstract by nature since in the FTS formalism, actions are simple la-
bels without any input or output. Additionally, an Abstract Test Case (ATC)
may not be executable. As we have seen, each transition can only be exe-
cuted by the set of products that match the associated feature expression. If
we consider a sequence of actions, we have to conjunct these feature expres-
sions and check the satisfiability of the resulting expression to know which
product(s) can execute this abstract test case. If the formula is not satisfi-
able, there is no product that can execute the behaviour described in this ab-
stract test case. For example, ATC = {pay, change, tea, serveTea, take} leading
to the run Àpay−−→Áchange−−−−→Âtea−−→ÅserveTea−−−−−−→Ætake−−−→À, is executable by products in
[[v ∧ ¬f ∧ v ∧ t ∧ t ∧ f ]], which in turn trivially maps to the empty set. Such a
negative test case can be useful to ensure whether an implementation does not
allow more products than specified.

Thus, to be executable, an ATC can be executed by at least one product
of the product line. We then extend this definition to executable test suites, by
stating that they should contain only executable test cases. Equipped with such
notions, we can defined product-line coverage as a function that takes a FTS and
abstract test suite as parameters and returns a value between 0 and 1. This value
represents the ratio between the number of actually covered elements (states,
transitions, etc.) and the number of possible ones in the FTS, if the value is 1
then we obtain all-X coverage, where X is the set of elements under consideration
for this coverage criterion. When such elements involve transitions, we impose
that these transitions are executable by at least one product (see [21] for formal
definitions). In our coffee machine, the following test suite both satisfies all-states
and all-transitions coverage:

{(pay, change, soda, serveSoda, open, take, close)
(free, tea, serveTea, take); (free, cancel, return)}

We also experimented using another criteria that is not based on the model
structure but on the capture of usage model that describes usages of the system
[19]. There are two ways to capture such usages: either by extracting them from
logs (such as Apache logs ) [20], and assign more importance to more frequent
usages or by assiging them directly using a dedicated modelling tool such as
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MaTeLO [2]. Technically, these usage models take the form of a Markov chain
that can be used to derive the most frequent test cases. There are then run on
the FTS to derive the associated product-line coverage metrics. This scenario
complements the one proposed by Samih et al. [35] who start by selecting a
product prior to generate test cases using statistical testing techniques [38]. For
more information about these dual scenarios, see [19].

Another interesting aspect that differs from “usual” coverage for single sys-
tems is the notion of P-coverage. P-coverage represent the ratio between the set
of products executable by a given abstract test suite and the set of products
derivable in the feature diagram that is [[FD]]. Since ATCs relates the two types
of coverage (products and their behaviours), their generation is de-facto a multi-
objective problem. The compactness of the FTS formalism makes it easy for the
SPL testing community to study different multi-objective scenarios and compare
different criteria.

Multi-objective Coverage. Continuing previous line of work that considered
coverage only a the structural (feature diagram) level [25, 26, 32], we initially
started with a rather strange question: “what is the behavioural coverage of
structural coverage ?” [22]. The idea behind this question is that as some be-
havioural coverage criteria may be difficult to compute in practice because of
their complexity, approximating them with less computationally expensive ap-
proaches at the feature diagram level can be of interest. To investigate this
question, we measured the behavioural coverage (state, transitions and actions)
of two FD coverage criteria: (i) pairwise coverage [29, 32] that covers any two
combination of features and (ii) similarity coverage that maximises distances
between configurations [1,25]. Results [22] shown that it was indeed possible to
cover large parts of behaviour by sampling few configurations (e.g. only 2 prod-
ucts were necessary to achieve all-transitions coverage for the Claroline SPL
allowing more than 5,000,000 products). Nevertheless, the resulting test suites
are not optimal and more experiments are needed to generalise our results.

Recently, we considered extending similarity at the behavioural level to de-
sign search algorithms that maximize both distances between configurations at
the FD level and distance between test cases [23]. We considered various dis-
tances (Hamming, Anti-Dice, Jaccard, Levhenstein) and both single objective
(operating on an initial random set of test cases) and bi-objective (also taking
into account distance between products). We seeded our models with random
faults to compare the various algorithms. In our models, being bi-objective is
not necessary an advantage, and the efficiency seems largely influenced by the
choice of the distance function we make. A threat to validity to these conclusions
is the fact that our feature diagrams are not heavily constrained, favouring the
accidental discovery of dissimilar products.

4.2 Mutation Analysis.

A less expected application of FTSs in the field of software testing is mutation
analysis [18, 23]. Mutation analysis (see [28] for a comprehensive survey) is a
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technique that assess the quality of test suites by mutating software artifacts
(program, models) called mutants and measuring the ability of such test suites
to distinguish them from the original (we also say that a test case kills a mutant)
ones. The underlying idea is to mimic a “competent programmer” that would
introduce a few mistakes in the implementation of a system. The mutation score
measures the ratio of the number of killed mutants divided by the number total
mutants for a given test suite. The contribution of FTS to mutation testing is
first to model mutants as families [18] and then to exploit the FTS formalism to
perform shared execution of the mutants “all-at-once” to speed up analysis [23].

Mutants as SPL Variants. We studied mutation analysis at the model level,
where the original system and its mutants can be expressed as transition sys-
tems. Model-based mutation complements program-based mutation as they tend
to exercise different faults []. To generate mutants automatically we design so-
called mutation operators. For a transition system, these operators are model
transformations that for example remove a transition or replace an action by
another one. As we have seen, the features in a FTS add or remove transitions
in a similar way. Building on this analogy, we sketched a vision of managing
(model) mutants as a SPL to bring all the advantages of FTS and variability
modelling to mutation analysis [18]. We describe mutations as features and or-
ganise them in a feature diagram, which allows a precise control on the type and
number of mutants we allow for analysis. From a behavioural perspective, all
the mutants are represented in a centralised model (the FTS), which each eases
their management and storage.

Accelerating Mutation Analysis. As noted by Jia and Harman [28], one of
the practical obstacles to the development of mutation testing is the cost asso-
ciated to mutation analysis. Traditional mutation testing proceeds by running
every test case on every mutant. Since we need to have a large number of mu-
tants to assess test suites’ sensitivity in a meaningful way, analysis time can be
huge. In fact, this is equivalent as processing all mutants in isolation like the
naive approach is doing for product line model-checking. Of course, an impor-
tant justification of using the FTS formalism to model mutations is to avoid
this naive approach and perform family-based mutation analysis [18]. We imple-
mented this featured model-based mutation analysis recently [23]. The Featured
Mutant Model (FMM) is thus comprised of a FTS modelling the mutant family
and a feature diagram representing all the mutations supported by this family.
To perform mutation analysis, we simply run test cases on the FTS. As we have
seen, this yields a boolean formula describing all the mutants (in [[FD]]) that
are killed by this test case. Therefore, we only need to run each test case once
on the FTS, rather than on the 2n individual transition systems associated to
this mutant family. Our experiments showed gains between 2.5 and 1,000 times
than previous approaches. Additionally, the FMM favours higher-order muta-
tion. Higher-order mutation consists in applying several mutation operators on
the same model. In the FMM scheme, higher-order mutation is supported allow-
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ing certain features to be selected together in a mutant. If we want to restrict
ourselves to the first order, we then need to specify that each feature excludes all
the other ones. Computing the mutation score require enumerating the instances
satisfying the union of formulas gathered for each test case and computing the
total number of mutants from the feature diagram. Computing such values may
be tricky for large models (even with BDD solvers) and optimisations require to
be investigated [23].

4.3 ViBES: A model-based framework for SPL testing.

All our research on model-based testing has been integrated in a framework
called ViBES [24]. We designed an XML representation for FTS while the fea-
ture diagrams are encoded in TVL [6]. The framework is implemented in JAVA
and provides a domain-specific language to create mutations operators and mu-
tant families in a programmer-friendly way. The framework also contains the
implementations of test coverage and generation techniques discussed above. Fi-
nally, the framework is open-source (MIT Licence) and can be downloaded here:
https://projects.info.unamur.be/vibes/.

5 Conclusion

In ths paper, we summarised six years of efforts in harnessing the central problem
of SPL analysis: the combinatorial explosion of the number of products to con-
sider. To this end, we introduced featured transiation systems as a compact and
efficient representation of the whole behaviour of a SPL. This unique representa-
tion of all the products served as a support to a family of verification algorithms
itself implemented as a software product-line [17]. We also employed FTS for
model-based testing activities such as coverage and test generation and prioriti-
sation. The FTS formalism demonstrated its universality to readily be applide
for mutation analysis of single systems, with substantial analysis speedups.

After having had a look on the past, let us have a look in the future. There
are several research directions worth of investigation. First we would like to
extend our verification algorithms to quantitative software product lines. This
requires to extend the FTS formalism to specify quantities [31]. Another in-
teresting information to specify in FTS is probabilities, in order to perform
statistical model-checking activities [33]. Such extended FTS formalism is also
of interest for testing [19, 20]. As is the addition of inputs and outputs for ioco
conformance [3]. With respect to mutation, we would like to formally inves-
tigate the mutant equivalence problem using exact or approximate simulation
techniques [13].
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