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ABSTRACT

Automated feedback and grading platforms can require substantial
effort when encoding new programming exercises for first-year
students. Such exercises are usually simple but require defining
several test cases to ensure their functional correctness. This paper
describes our initial effort to leverage automated test case genera-
tion for simple programming exercises. We rely on grey-box fuzzing
and random combinations of method calls to test the students’ so-
lutions and compare their execution to the results produced by a
reference implementation. We implemented our approach in a pro-
totype, called SimPyTest, openly available on GitHub. We discuss
its usage and possible future extensions.
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1 INTRODUCTION

Following the learning by doing philosophy, first-year programming
and algorithmic courses usually require students to learn program-
ming through practical sessions. Typically, such sessions include
tasks where students design algorithms and data structures and
write programs for simple (yet not trivial) problems. Typical exam-
ples include defining list structures and various sorting algorithms.
Over the years, such courses started to rely on automated grading
platforms [8, 11], such as INGInious [6, 7], allowing (i) to cope with
the ever-growing number of students, (ii) provide a larger number
of exercises together with (iii) rapid formative feedback.

Designing and encoding exercises in platforms such as INGIn-
ious is not trivial and requires a substantial effort for a given course
[13]. The teacher has to design the exercise together with a way to
provide feedback to the students when they submit their code. Such

EASEAI ’22, November 18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
the 4th International Workshop on Education through Advanced Software Engineering
and Artificial Intelligence (EASEAI ’22), November 18, 2022, Singapore, Singapore, https:
//doi.org/10.1145/3548660.3561334.

feedback must check that the code compiles and executes correctly
w.r.t.what is expected for the given exercise. As proving the correct-
ness of the student’s code would be too costly [6], INGInious relies
on testing. When students submit their code, the system executes it
against a set of unit tests defined by the teacher to ensure that the
code behaves as expected and that proper feedback is provided to
the student. For each exercise, the teacher has to define a set of unit
tests covering expected behaviours and preventing invalid ones (for
instance, by testing corner cases). In addition, the teacher will have
to define a correct program to check that the tests work as expected.
Multiplied by the number of exercises, designing practical sessions
for a programming course can be time-intensive.

Over the years, researchers have developed many automated test
case generation and execution approaches relying on various arte-
facts to generate tests. Among those approaches, search-based test
case generation [10] depends on the source code of an application to
generate tests exercising different paths of the code. The generation
process is driven by one or several criteria like, for instance, branch
coverage, requiring the tests to execute the different branches of
the program. Unlike search-based test case generation, fuzzing [14]
does not necessarily require access to the application’s source code
under test. For instance, black-box fuzzing [14] approaches will
generate a large number of random input values to try to provoke
a crash of the application under test. Other fuzzing approaches rely
on partial (grey-box fuzzing [14]) or full (white-box fuzzing [14])
analysis of the program under test to drive the input generation
process and exercise new paths during the execution.

In this paper, we explore how automated test case generation
can help reduce the effort of creating new programming exercises
while providing useful feedback. Unlike other approaches [9], we
rely on fuzzing and random combinations of method calls, as the
programming exercises are small, with well-defined inputs and out-
puts and come with a (presumably) correct reference implementation
of the program the students have to write. This correct version
allows comparing the outputs of the students’ programs against the
output produced by the correct version. We provide a prototype,
SimPyTest, openly available at https://github.com/reirep/unamur-
tests-python-auto.

2 CONTEXT

The context of this research is a first-year bachelor’s course teach-
ing the basics of algorithmic and data structures at the University of
Namur . Teaching activities include lectures on specification using
pre-post conditions, recursion, dynamic programming, memoisa-
tion, greedy algorithms and data structures (list, red-black-trees,
etc.), and practical sessions during which students have to write
algorithms for simple problems [5]. The course relies on Python
and is taught for one semester off-site from the main campus, which
means that the teaching team is available only one day per week
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for in-person meetings with students. In this context, the teaching
team has decided to use INGInious to help students develop their
programming skills outside the practical sessions.

From our context, we identify the following challenges: (1) the
course started recently in January 2022 and creating a set of pro-
gramming exercises with their test cases is tedious and time-con-
suming [13]. (2) The availability of the teaching team on-site is
limited, which poses several challenges in providing appropriate
feedback to students. This is also an opportunity to work in a two-
step process where we first provide automated formative feedback
and, if needed, we can provide additional feedback. (3) The practical
sessions have two different types of exercises: solving algorithmic
problems for which the students have to apply one of the program
construction method (i.e., recursion, memoisation, dynamic pro-
gramming, or greedy algorithms) seen during the course, and data
structures definitions and manipulations, for which students have
to specify and implement operations for a data type (e.g., sets, piles,
queues, etc.) using one of the data structures (i.e., lists, trees, red-
black trees) seen during the course [5]. (4) Automated feedback
is challenging as it requires providing information that can help
students improve. We also assume that the exercises are (relatively)
simple and well defined, which is an opportunity to use automated
test case generation approaches [10, 14].

For each exercise, we have the following elements: (1) a descrip-
tion of the problem to solve, with some examples illustrating the
inputs and expected outputs; (2) a specification in the form of a semi-
formal definition of the pre and post-conditions for algorithmic
problems or the definition of the data structure for data structure
definition; (3) a reference implementation of the algorithm in the
form of a function (for algorithmic problems) or a class imple-
menting the internal structure and different operations (for data
structure definitions). Only the descriptions are sent to the students.
The teachers use the specifications and the implementations to
provide feedback on the exercises during the practical sessions.

To answer the different challenges, we envision an extension
of INGInious able to automatically generate and execute tests on
students’ code and provide feedback about the conditions in which
a test fails. The following section details the implementation choices
of our prototype for Simple Python code Testing (SimPyTest).

3 SIMPYTEST PROTOTYPE

INGInious [6, 7] is a free open source web-based automated grading
system for programming exercises. Similar to other platforms [4,
12], it is primarily used to help teach programming to beginners. It
has been developed since 2014 and adapted to other courses [3]. We
select INGInious as a basis to implement our prototype primarily
due to its availability and the extension possibilities it offers.

3.1 Automated Testing

As explained in Section 2, we have a semi-formal specification
and a reference implementation of the solution for each exercise.
Since semi-formal specifications cannot be used as-is for test case
generation, we considered various automated test case generation
approaches (listed in Table 1) able to work from the source code.

Random testing [1] consists in randomly generating input
values for a program under test and checking if, when executed with

Table 1: Automated test case generation techniques

Technique Pros Cons

Random testing [1] Very easy to implement No guarantee of coverage, high
number of executions

Property-based testing [1] Covers input and output domains Requires to formalise and encode
the properties

Black-box fuzzing [14] Easy to implement Performance depends on the ini-
tial seeds

Grey-box fuzzing [14] Relatively easy to implement, does
not require initial seeds

Achieves a lower coverage com-
pared to white-box fuzzing

White-box fuzzing [14] Allows high coverage of the code Requires heavy instrumentation
of the code, complex to put in
place

Search-based testing [10] Allows high coverage of the code,
generates complete unit tests (not
only input values)

Requires heavy instrumentation
of the code, complex to put in
place

those values, the program crashes or not. Property-based testing

[1] requires to define properties that the program under test should
satisfy. In our case, one would define such properties according
to the pre and post-conditions. A random generator then tries
to generate counter-examples input values for which the output
would not respect the defined properties. Fuzzing [14] relies on the
rapid generation of structured input data (e.g., formatted strings)
and execution of the program under test to trigger unexpected
behaviours and cause crashes. A typical fuzzer starts from an initial
set of valid inputs (i.e., the initial seeds) and will iterate over the
following steps for a given time budget: select a random seed,mutate
it to generate a new seed (e.g., adding, removing or replacing a
character in a string), execute the program with this new seed,
monitor the execution and report unexpected behaviours, and move
to the next iteration. The performance of a fuzzer depends on
the balance between the throughput (i.e., the number of inputs
it generates and executes the program on) and the complexity of
the analysis performed during each iteration. Black-box fuzzing

[14] is easy to implement but limited as it only considers the input
and output values (similarly to random testing). In addition to
the output, grey-box fuzzing [14] also considers the program’s
internal structure to collect initial seeds and monitor the blocks
of code executed for each given input. White-box fuzzing [14]
offers the highest guarantee to cover the different parts of the code
at the cost of heavier program analysis and the usage of constraint
solvers to generate input values [2]. Finally, Search-based testing

[10] relies on evolutionary computation to evolve and refine a
population (i.e., a set) of test cases using evolutionary operators
(i.e., mutation and crossover) for a given amount of time. Unlike
fuzzing, search-based testing generates full-fledged tests, including
calls to various functions and the generation of assertions.

3.2 Testing Solutions to Algorithmic Problems

As algorithmic problems should be written as functions with
well-defined parameters and return value types, SimPyTest lever-
ages fuzzing to test students’ solutions automatically. As explained
in Table 1, different fuzzing techniques have different pros and cons.
We experimented with the different fuzzing techniques and found
that black-box fuzzing was very easy to implement but performed
poorly. White-box fuzzing was complex to put in place as it re-
quired heavy instrumentation. Moreover, it requires the usage of
a constraint solver to generate inputs, which can cause scalability
issues when evaluating a large number of students’ code. We found
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1 from correcteur.feedback.textRepporter import TestRepporter
2 from correcteur.fuzzing.fuzz import fuzz
3
4 [...]
5
6 # Run the fuzzer
7 reporter = TestRepporter ()
8 valid_modules = ["student_code"]
9 fuzz(reporter , student_code.adder , adder_validate , valid_modules , runs

=1000)
10
11 # Get the results
12 if len(reporter.get_output ()) == 0:
13 print("ok")
14 else:
15 print(reporter.get_text_output ())

Listing 1: Example of automated correction for a simple

algorithmic problem (the addition of two integers)

that grey-box fuzzing offers a good balance between coverage of
the program under test and the overall execution time.

Listing 1 illustrates an example of Python script providing au-
tomated feedback in INGInious for a given simple exercise (here,
a function adder(int,int) returning the sum of two integers).
The call to the fuzz function (at line 9) requires a reporter col-
lecting the results of the execution, the student’s implementation
student_code.adder of the adder function, the reference imple-
mentation adder_validate of the adder function, the Pythonmod-
ules that can be used (valid_modules), and the number of itera-
tions of the fuzzer (runs=1000). After the execution, the results
are retrieved from the reporter object and printed to the student
(line 12). In case of an error or mismatch between the student’s
implementation and the expected value, the message indicates the
returned and expected values or the error message.

3.3 Testing Data Structures Definitions

For a data structure definition, students have to define a class imple-
menting the different methods working with the data structure. For
instance for a list, students might have to implement the initialisa-
tion of an empty list (init), the addition (add), removal (remove),
and retrieval of the last value of the list (last). Automatically test-
ing such classes is not as simple as for single functions. As long as
the list has been initialised, the different methods might be called
in various order and should behave accordingly. For instance, one
might add several values before retrieving the last value in the list.

Similarly to what is done in search-based testing, testing a data
structure with SimPyTest consists in generating and executing
combinations of method calls. However, unlike search-based test-
ing, the generation is a random search, not driven by any fitness
function. Exploring how search-based techniques can be leveraged
to increase the coverage of the tests is part of our future work.

Listing 2 provides an example of automatically testing data
structure definitions with SimPyTest by declaring different steps
(lines 8 and 10). Each step contains several methods that might
be called in random order. Methods of one step will always be
called before the methods of the next step. In our example, the
init method (at line 8) will always be called once (specified by the
max_depth_local=1 parameter) before any combinations of max-
imum 10 calls (specified by the max_depth_local=10 parameter)
to other methods (at line 10). For instance, combinations might be
<init, add(6), remove> or <init, remove, remove, last>. For

1 from correcteur.feedback.textRepporter import TestRepporter
2 from correcteur.steps.StepsRunner import StepRunner
3 from correcteur.steps.Step import Step
4
5 # Run the fuzzer
6 reporter = TestRepporter ()
7 runner = StepRunner(stop_on_first_error=True)
8 runner.add_step(Step([ student_code.init],
9 [init], max_depth_local =1, [...]))
10 runner.add_step(Step([ lambda: student_code.add(6), student_code.remove ,

student_code.last],
11 [lambda: add(6), remove , last], max_depth_local =10, [...]))
12 runner.compare_codes(reporter)
13
14 # Get the results
15 if len(reporter.get_output ()) == 0:
16 print("ok")
17 else:
18 print(reporter.get_text_output ())

Listing 2: Example of automated correction for a simple data

structure definition (a list)

Figure 1: Example of usage of SimPyTest in INGInious for a

simple algorithmic problem (the addition of two integers)

each random combination, the execution of the student’s imple-
mentation (e.g., student_code.init at line 8) is compared to the
reference implementation (e.g., init at line 9). As for algorithmic
problems, after the execution, the results are retrieved from the
reporter object and printed to the student (line 15). In case of an
error or mismatch between the student’s implementation and the
reference implementation, the message indicates the returned and
expected values or the error message.

3.4 Providing Feedback

One of the main challenges when dealing with automated testing
is to provide feedback that could be understood by the students
[6]. For now, SimPyTest limits this feedback to indicate which
input values or combinations of method calls did not work on
the student’s code. For instance, Figure 1 presents an example
of feedback for the adder function discussed in Section 3.2. The
message indicates that the call to the adder functionwith parameter
values (0, 0) did not return the right value.

Similarly, Figure 2 presents an example of feedback for the list
definition discussed in Section 3.3. The message indicates that for
the different methods implemented (only the init and addmethods
are shown in the Figure due to space constraints), the sequence
<init, add, last> did provoke an list index out of range exception
when executed on the student’s code.

As seen from the Figures, the feedback is (for now) minimal,
and several improvements are part of our future work. First, the
different error messages need to be printed using string templates
to ease the understanding and express the error using the same
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Figure 2: Example of usage of SimPyTest in INGInious for a

data structure definition (a list)

language level as the exercise description. For instance, “adding 0
to 0 did not work” instead of the message of Figure 1. Second, the
feedback has to provide enough details for the student to identify
the problem in their code and fix it. One solution could also be
to provide the result produced by the reference implementation
in SimPyTest. We plan to evaluate different feedback forms for
algorithmic problems and data structure definitions.

3.5 Architecture Overview

SimPyTest is implemented in Python to be easily integrated to IN-
GInious. Its internal architecture is composed of three main parts:
(1) fuzzing contains the different classes and functions handling
the automated testing of solutions to algorithmic problems. The
grey-box fuzzer is based on the implementation of Zeller et al. [14]
with the necessary modifications to compare the output produced
by the students’ implementation to the output produced by the
reference implementation. (2) steps contains the different classes
and functions handling the automated testing of solutions to data
structure definitions, including the generation of combinations of
method calls to test various usage scenarios of the student’s classes.
(3) feedback contains the different classes and functions handling
the feedback after executing the student’s code. As explained in
Section 3.4, this feedback is currently limited, and further devel-
opments are needed to enhance the information provided to the
students. The source code of SimPyTest is available on GitHub:
https://github.com/reirep/unamur-tests-python-auto.

4 CONCLUSION AND FUTUREWORK

In this paper, we illustrated how automated test case generation
could be leveraged to automatically correct simple programming
exercises to provide rapid feedback to the students while keeping
the workload of test case generation reasonable. We have intro-
duced SimPyTest, an open-source prototype relying on fuzzing
and random combinations of method calls to test solutions to algo-
rithmic problems and data structure definitions in the context of a

first-year algorithmic class at the University of Namur . SimPyTest
has been implemented as a plugin for INGInious. The approach
could be applied to any other automated feedback and grading
platform relying on testing to evaluate students’ solutions.

SimPyTest can be improved in several ways. First, it has to be
evaluated and validated with students in a full-fledged experiment.
Also, feedback for students is, for now, limited and could be im-
proved by using string templates to providemore readable messages
and additional information such as the expected output value. From
a testing perspective, SimPyTest could also be enhanced to provide
more guarantees that the students’ code behaves as expected, for
instance, by using white-box fuzzing for exercises having many
corner cases that need to be checked. We would also like to consider
other non-functional aspects like the time and space complexity of
the students’ implementations. Finally, we will evaluate different
configurations of SimPyTest with students to strike a good balance
between information feedback provided to the student, learning
objectives, and the student’s motivation.
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