
GitDelver Enterprise Dataset (GDED): An Industrial
Closed-source Dataset for Socio-Technical Research
Nicolas Riquet

NADI, University of Namur

Namur, Belgium

nicolas.riquet@unamur.be

Xavier Devroey

NADI, University of Namur

Namur, Belgium

xavier.devroey@unamur.be

Benoît Vanderose

NADI, University of Namur

Namur, Belgium

benoit.vanderose@unamur.be

ABSTRACT
Conducting socio-technical software engineering research on closed-

source software is difficult as most organizations do not want to

give access to their code repositories. Most experiments and publica-

tions therefore focus on open-source projects, which only provides

a partial view of software development communities. Yet, closing

the gap between open and closed source software industries is es-

sential to increase the validity and applicability of results stemming

from socio-technical software engineering research. We contribute

to this effort by sharing our work in a large company counting 4,800

employees. We mined 101 repositories and produced the GDED

dataset containing socio-technical information about 106,216 com-

mits, 470,940 file modifications and 3,471,556 method modifications

from 164 developers during the last 13 years, using various pro-

gramming languages. For that, we used GitDelver, an open-source

tool we developed on top of Pydriller, and anonymized and scram-

bled the data to comply with legal and corporate requirements. Our

dataset can be used for various purposes and provides information

about code complexity, self-admitted technical debt, bug fixes, as

well as temporal information. We also share our experience regard-

ing the processing of sensitive data to help other organizations

making datasets publicly available to the research community.

CCS CONCEPTS
• Social and professional topics → Software maintenance;
Project staffing; • Software and its engineering → Software
libraries and repositories; Programming teams.

KEYWORDS
dataset showcase, socio-technical aspects, development teams

ACM Reference Format:
Nicolas Riquet, Xavier Devroey, and Benoît Vanderose. 2022. GitDelver

Enterprise Dataset (GDED): An Industrial Closed-source Dataset for Socio-

Technical Research. In 19th International Conference on Mining Software
Repositories (MSR ’22), May 23–24, 2022, Pittsburgh, PA, USA. ACM, New

York, NY, USA, 5 pages. https://doi.org/10.1145/3524842.3528003

1 INTRODUCTION
Many academic researchers working on socio-technical aspects of

software engineering do not have access to closed-source reposito-

ries data. Most (replication) studies therefore focus on open source

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in 19th International
Conference on Mining Software Repositories (MSR ’22), May 23–24, 2022, Pittsburgh, PA,
USA, https://doi.org/10.1145/3524842.3528003.

projects [2, 15, 16, 21, 34]. Although there has been an increasing

effort from the industry to support open source initiatives, solely

relying on openly accessible sources of information represents a

threat to the validity, generalizability, and applicability of research

projects as the cultures of open and closed source communities

may differ significantly [14, 19, 20, 24]. For instance, unlike for

open source communities, closed source developers are usually all

employees of the same organization. We believe this situation can

undermine researchers’ efforts to provide insights and solutions to

practical problems faced by a large number of developers.

Yet, most organizations do not want to give external researchers

access to their proprietary closed source repositories and infrastruc-

tures. It is considered a sensitive topic as it usually represents risks

in terms of intellectual property, trade secrets protection, applica-

tion and infrastructure security, and regulatory constraints. For

instance, developer names are protected by the General Data Pro-

tection Regulation (GDPR) [17] in Europe. Our goal with this paper

is to contribute to the effort of closing the gap between research

on open and closed source communities. We report on our efforts

and results in producing and sharing with the research community

a dataset containing socio-technical information from industrial

closed-source projects.

In summary, our contributions are: (1) a dataset containing socio-

technical information about 101 software projects, 106,216 commits,

470,940 file modifications and 3,471,556 method modifications per-

formed by 164 developers in 7 different programming languages

(mostly Java, C#, and JavaScript, but also TypeScript, Python, PHP,

C++) over 13 years; and (2) an experience report on collecting and

anonymizing socio-technical information in an industrial closed-

source context.

2 CONTEXT AND MOTIVATION
Software is critical for the efficient operations of Anonymous1 and
it manages more than six million lines of code, mostly written in

Java, C#, and JavaScript. The company has also recently begun

using SonarQube [26] to perform static analysis on its codebases.

Complexity metrics, such as the number of lines of code (LOC)

and cyclomatic complexity [12], are particularly monitored. Those

metrics can quickly reveal bad coding practices and design mistakes

potentially increasing technical debt [5, 9]. They can also be used

to identify developers in need of coaching or teams rushing to meet

a deadline [3], allowing to mitigate the social debt [29].

1
Although the company helped us anonymizing and openly distributing the dataset,

they explicitly asked us to not mention their name for public relations reasons and in

case security vulnerabilities could still be found in the data despite our best efforts.

We will refer to the company as Anonymous. Please contact us if you would like to

have more information about the company.

https://orcid.org/0000-0003-1864-0121
https://orcid.org/0000-0002-0831-7606
https://orcid.org/0000-0001-9752-0085
https://doi.org/10.1145/3524842.3528003
https://doi.org/10.1145/3524842.3528003


MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Riquet et al.

In order to supplement the findings provided by SonarQube

and study the evolution of socio-technical indicators, the company

decided to analyze historical development data by mining informa-

tion from its development infrastructure. Data mining techniques

on version control history and behavioral code analyses [31] can

indeed help identify some of the social, organizational and higher-

level engineering aspects of software development. This type of

analyses can be more helpful in predicting quality problems than

purely code-related metrics [34].

3 DATA COLLECTION AND ANONYMIZATION
3.1 Repository selection
The company counts hundreds of software repositories and not

all of them are relevant for our research. We selected repositories

according to a set of inclusion and exclusion criteria. We included

repositories of applications under active development and main-

tenance, i.e., applications currently assigned to developers. And

we excluded repositories of applications in their early phase of

development, as they do not provide enough history, and various

utility tools, as they are small, do not evolve, and do not represent

the core business of Anonymous. This selection process left us 101

repositories to analyze.

3.2 Mining tool
The selected repositories were mined using GitDelver [22], an

open-source tool that we developed. It is a command line tool writ-

ten in Python that relies on the PyDriller Git mining framework

[27], the Lizard cyclomatic complexity analyzer [32], and the Pan-

das data analysis library. As shown in (1) and (2) in Figure 1, it can

analyze either a single repository or multiple repositories in bulk

(using Python’s multiprocessing), depending on the input folder

path. It uses PyDriller for traversing all the commits and records

and calculates modifications information on three different gran-

ularity levels: the commits, the files, and the methods. For each

repository, GitDelver produces CSV files containing the collected

data (Section 5 provides a detailed description of the content).

By default, during the analysis at the files and methods levels,

GitDelver only keeps files for which Lizard can calculate com-

plexity metrics. As a consequence, the data at the file and method

levels do not contain information about all of the commit objects

identified at the commit level as some of the latter only concern

changes on non-code files (e.g., text files, images). Similarly, not

all file modifications imply a change inside of methods as some

of them concern changes related to format, comments, order of

methods, or code outside of methods and constructors. We used the

default configuration of GitDelver for our research. More details

about the design and usage of the tool can be found on GitHub:

https://github.com/nicolasriquet/GitDelver.

3.3 Anonymization requirements
The data collected by GitDelver contains information that the

company does not want or was not allowed to make public:

(Anonym. 1) Personal data related to the developers, as per

the GDPR. Asking for everyone’s consent was not feasible as some

people would not agree disclosing personal data and others had left

the company.

Git 1 Git N

GitDelver

Commits 1

CSV

°°°

(1)

(2)

(3)

(4) (5)

Commits N

CSV

File modifications 1

CSV

File modifications N

CSV

Method modifications 1

CSV

Method modifications N

CSV

Datasets merging and
anonymizing script

List of word aliases

Global commitsCSV

Global file

modificationsCSV

Global method

modificationsCSV

Figure 1: Dataset generation pipeline

(Anonym. 2) Code excerpts (GitDelver outputs the lines of

code containing self-admitted technical debt), as the analyzed code

is proprietary and the company does not want to make it public.

(Anonym. 3) The name of the company. There are two reasons

for this. The first one is linked to public relations, as the company

does not want its name to be used in future publications without

first approving the content. Therefore, not removing the name of

the companywould make future uses of the dataset very impractical

for all the parties involved. The second reason is that the company

wants to minimize the risks of becoming the target of cyberattacks.

(Anonym. 4) Everything that might contain sensitive keywords

related to the company’s business or to security features that would

attract the attention of malicious actors. Examples of sensitive

security-related keywords include: account, password, token, au-
thenticate, authorization, etc. We identified 140 of such keywords.

We validated those keywords by manually exploring the dataset

after the anonymization process.

4 DATASET GENERATION
Figure 1 shows an overview of the dataset generation pipeline.

Overall, the process took 23 hours on a 2.50GHz Intel Core i5-

7200U CPU with 8GB RAM. The manual steps involved in the data

preparation and anonymization took about five days.

4.1 Mining code history and complexity
We cloned the selected repositories using the git clone --bare
command to simplify the analysis of all Git branches at once. The

repositories were then analyzed with GitDelver (step (1) in Figure

1). It mined and analyzed all the repositories and generated for each

https://github.com/nicolasriquet/GitDelver


GitDelver Enterprise Dataset (GDED): An Industrial Closed-source Dataset for Socio-Technical Research MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

of them three CSV files containing information about (resp.) the

commits, the file modifications, and the method modifications (step

(2) in Figure 1).

4.2 Merging and anonymization
We rely on the Pandas library [13, 30] to merge and anonymize

the outputs of GitDelver (step (3) in Figure 1) according to the

following steps: (1) merging the CSV files related to the commits,

files modifications, method modifications into three global CSV

files. (2) Fixing and normalizing the Git author names (Git allows

each developer to freely set their author name and e-mail address,

and we discovered that most developers had used several differ-

ent author names). For this, we manually defined renaming rules

for each developer and simply replaced all their aliases with their

normalized name. (3) Removing the SATDLine column, which con-

tains code excerpts, from the Files_history CSV file to comply

with Anonym. 2. (4) Removing the Message column from the

Commits_history CSV file, as the commit messages tend to men-

tion sensitive business and security-related information and could

not be kept intelligible when scrambling keywords (Anonym. 1, 3,
4). It should be noted that most of the messages were not in English

and so were of limited usefulness to the broad research community.

(5) Manually preparing a list of more than 700 word replacements

for developers’ names and other keywords (step (4) in Figure 1),

and feeding it to the script to remove or scramble all remaining

sensitive information (step (5) in Figure 1) (Anonym. 1-4).

5 DATASET DESCRIPTION
This section describes the three CSVs contained in the dataset.

It is important to note that the file modifications CSV references

identifiers from the commits CSV and that the method modifica-
tions CSV uses identifiers referencing both of these CSVs (i.e.,

columns like CommitId or FilePath can be used as foreign keys).

The [Anonymized] tag means that all the names contained in the

column have been replaced with fictional ones. The [Scrambled]
tag means that all values where scanned for sensitive keywords

and that those have been replaced with other unrelated words. The

scrambled values are mainly used for branches, file paths and file

names. The goal here is to make it possible to study the evolution

of these elements without compromising security. The dataset has

been uploaded and is openly accessible on Zenodo [23].

Commits_history CSV. The commits_history is a 59 MB CSV file

that contains data about 106,216 commits performed by 164 de-

velopers on 101 repositories over 13 years. It has the following

columns:

• Repository: the name of the repository. [Anonymized]
• Branches: the list of Git branch names in which this commit

has been integrated (e.g., ’master’, ’develop’, ’release/V1.1’).

[Scrambled]
• NbBranches: the number of branches in which this modifica-

tion has been integrated.

• CommitId: the identifier of the commit.

• Author : the author of the modification. [Anonymized]
• DateTime: the date and time of the modification.

• Date: the date of the modification.

• HourOfDay: the hour of the day of the modification.

• Merge: flag telling if the commit is a merge commit.

• BugFix: flag telling if the modification is a bugfix. This relies

on the analysis of all commit messages and the detection of

the following keywords: fix, solve, bug, defect, problem.
This list of keywords matches our observations at Anony-
mous and can be extended in GitDelver.

• SATD: flag telling if the modification contains Self-Admitted

Technical Debt. This relies on the analysis of all added or

modified lines of code and the detection of the following key-

words in code comments: todo, fixme, tofix, hack, workaround.
This list of keywords matches our observations at Anony-
mous and can be extended in GitDelver.

• NbModifiedFiles: the total number of files modified.

• ModifiedFiles: the list of files modified by this commit.

• NbModifiedProdSourceFiles: the number of production source

files modified by this commit.

• NbModifiedTestSourceFiles: the number of test source files

modified by this commit.

• NbModifications: the total number of modifications.

• NbInsertions: the number of insertions done by the commit.

• NbDeletions: the number of deletions done by the commit.

Files_history CSV. The files_history is a 258 MB CSV file that

contains information about 470,940 file modifications performed by

153 developers in 53,630 commits on 101 repositories over 13 years.

As explained in Section 3.2, files_history only contains information

about source code files and tracks less commits and committers

than commits_history. It has the following columns:

• Repository: the name of the repository. [Anonymized]
• Branches: the list of Git branch names in which this mod-

ification has been integrated (e.g., ’master’, ’develop’, ’re-

lease/V1.1’). [Scrambled]
• NbBranches: the number of branches in which this modifica-

tion has been integrated.

• OldFilePath: the old relative path to the file. [Scrambled]
• FilePath: the relative path to the file. [Scrambled]
• FileName: the name of the file. [Scrambled]
• FileExtension: the file extension.
• FileType: the type of the file (Production or Test).
• ChangeType: the type of the change (ADD, COPY, RENAME,
DELETE, MODIFY or UNKNOWN).

• NbMethods: the number of methods in the file.

• NbMethodsChanged: the number of methods that have been

modified in this file for this commit.

• NLOC: the number of lines of code of the file.

• Complexity: the Weighted Methods per Class complexity,

i.e., the sum of the cyclomatic complexity numbers of all the

methods of the file.

• NlocDivByNbMethods: the number of lines of code of the file

divided by the number of methods of the file.

• ComplexDivByNbMethods: the complexity of the file divided

by the number of methods of the file.

• SATD: flag telling if the modification contains Self-Admitted

Technical Debt.

• NbLinesAdded: the number of lines added.

• NbLinesDeleted: the number of lines deleted.

• CommitId: the identifier of the commit.



MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Riquet et al.

• Author : the author of the modification. [Anonymized]
• DateTime: the date and time of the modification.

• Date: the date of the modification.

• HourOfDay: the hour of the day of the modification.

Methods_history CSV. Themethods_history is a 1,787 MB CSV file

that contains information about 3,471,556 method modifications

performed by 153 developers in 50,477 commits on 101 reposito-

ries over 13 years. methods_history only tracks commits involving

changes in the content of methods. It has the following columns:

• Repository: the name of the repository. [Anonymized]
• Branches: the list of Git branch names in which this mod-

ification has been integrated (e.g., ’master’, ’develop’, ’re-

lease/V1.1’). [Scrambled]
• NbBranches: the number of branches in which this modifica-

tion has been integrated.

• OldFilePath: the old relative path to the file. [Scrambled]
• FilePath: the relative path to the file. [Scrambled]
• FileName: the name of the file. [Scrambled]
• FileType: the type of the file ("Production" or "Test").
• MethodName: the name of the method. [Scrambled]
• NbParams: the number of parameters in the signature.

• NLOC: the number of lines of code of the method.

• Complexity: the cyclomatic complexity number of themethod.

• CommitId: the identifier of the commit.

• Author : the author of the modification. [Anonymized]
• DateTime: the date and time of the modification.

• Date: the date of the modification.

• HourOfDay: the hour of the day of the modification.

6 DISCUSSION AND FUTUREWORK

Applications and research opportunities. The main value of

this work is to provide researchers the opportunity to study devel-

opment practices in a closed-source industrial context and conduct

new and replication studies on a variety of socio-technical topics.

Examples include the code branching strategies [18, 25], commit

change patterns [11] and classification of commits [8], the time

of the day at which certain types of commits are done (e.g., bug

fixes, commits containing self-admitted technical debt) [6], the

co-evolution of production and test files [33], the evolution of com-

plexity metrics [1], etc.

Moreover, GitDelver can be used to extend the dataset by ana-

lyzing other repositories. This would allow to compare the practices

of Anonymous to those of other companies and open-source com-

munities. Sharing this tool allows other organizations to study their

own codebases without necessarily disclosing their data.

Lessons learned on sharing industrial data. Anonymizing data-

sets for public sharing does not require a lot of work and can be

done in a few days with freely available tools and minimal data

analysis skills. The most complicated part is to take the plunge

and decide which data can be shared as-is and which should be

anonymized or scrambled first. Of course, someone inside the or-

ganization could easily de-anonymize the data if they have access

to the analyzed software repositories. This is not a problem since

they are authorized to view the information in the first place and

are contractually bound to preserve its confidentiality.

The approach we followed here is straightforward. As a general

lesson, it can be summed up by asking the following questions:

(1) Does the dataset contain data that you have to protect because

of regulatory concerns? If yes then anonymize them. (2) Does the

dataset contain sensitive business or security-related information?

If yes then scramble them. (3) Do you see public relations concerns

with what could be done with your data? If yes then make sure to

scramble everything sensitive and make the datasets public without

mentioning the name of your organization.

7 RELATEDWORK
Several repository mining tools have been developed over the years,

such as Boa [4], which is used to analyze large-scale SVN reposito-

ries, and TNM [28] which is specialized in detailed social analyses.

Our tool is built on top of the PyDriller Git mining framework

[27], which offers integration with Lizard’s cyclomatic complexity

analyzer [32] and can easily be used in conjunction with Python

data analysis libraries such as Pandas [30].

Various datasets have also been provided to perform research on

commit activities and related data. For instance, the Jira Repository

Dataset [16] presents data extracted from the Jira issue-tracking sys-

tems of four open-source communities and can be used for research

about the social aspects of development. The GHTorent dataset [7]

provides data about a large number of GitHub’s public repositories

and the Technical Debt Dataset [10] provides technical debt infor-

mation about 33 open-source projects from the Apache Software

Foundation. The GDED dataset that we present here differs in that it

provides data about industrial, closed-source, software repositories

and we believe it can be used in various kinds of socio-technical

research and for conducting replication studies.

8 CONCLUSION
All software development organizations are different and some

of them are more open to sharing development data than others.

In this paper, we report our effort for building, anonymizing, and

sharing GDED, a dataset containing socio-technical information

about 101 closed-source industrial applications’ histories, covering

a period of 13 years. We built this dataset using GitDelver, an

open-source tool that we developed for this purpose. GDED can

be used to answer various research questions about the company’s

development activities.

We intend to follow up on this work by exploring various re-

search opportunities offered by GDED to better understand the

development and mitigation of socio-technical debt in the industry.

We also plan to extend the generated datasets with information

coming from other data sources (e.g., issues, builds, etc.) to provide

a more complete picture of the situation in the organization.

REFERENCES
[1] Mamdouh Alenezi and Khaled Almustafa. 2015. Empirical analysis of the com-

plexity evolution in open-source software systems. International Journal of
Hybrid Information Technology 8, 2 (2015), 257–266. https://doi.org/10.14257/

ijhit.2015.8.2.24

[2] Guilherme Avelino, Leonardo Teixeira Passos, André C. Hora, and Marco Tulio

Valente. 2016. A novel approach for estimating Truck Factors. In 24th IEEE
International Conference on Program Comprehension, ICPC 2016, Austin, TX, USA,
May 16-17, 2016. IEEE Computer Society, 1–10. https://doi.org/10.1109/ICPC.

2016.7503718

https://doi.org/10.14257/ijhit.2015.8.2.24
https://doi.org/10.14257/ijhit.2015.8.2.24
https://doi.org/10.1109/ICPC.2016.7503718
https://doi.org/10.1109/ICPC.2016.7503718


GitDelver Enterprise Dataset (GDED): An Industrial Closed-source Dataset for Socio-Technical Research MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

[3] Bahareh Bafandeh Mayvan, Abbas Rasoolzadegan, and Abbas Javan Jafari. 2020.

Bad smell detection using quality metrics and refactoring opportunities. Journal
of Software: Evolution and Process 32, 8 (2020), e2255. https://doi.org/10.1002/smr.

2255

[4] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2013. Boa: a

language and infrastructure for analyzing ultra-large-scale software repositories.

In 35th International Conference on Software Engineering, ICSE ’13, San Francisco,
CA, USA, May 18-26, 2013, David Notkin, Betty H. C. Cheng, and Klaus Pohl (Eds.).
IEEE Computer Society, 422–431. https://doi.org/10.1109/ICSE.2013.6606588

[5] Neil Ernst, Rick Kazman, and Julien Delange. 2021. Technical Debt in Practice.
The MIT Press. https://doi.org/10.7551/mitpress/12440.001.0001

[6] Jon Eyolfson, Lin Tan, and Patrick Lam. 2011. Do time of day and devel-

oper experience affect commit bugginess. In Proceedings of the 8th Interna-
tional Working Conference on Mining Software Repositories, MSR 2011 (Co-located
with ICSE), Waikiki, Honolulu, HI, USA, May 21-28, 2011, Proceedings, Arie van
Deursen, Tao Xie, and Thomas Zimmermann (Eds.). ACM, 153–162. https:

//doi.org/10.1145/1985441.1985464

[7] Georgios Gousios. 2013. The GHTorent dataset and tool suite. In Proceedings
of the 10th Working Conference on Mining Software Repositories, MSR ’13, San
Francisco, CA, USA, May 18-19, 2013, Thomas Zimmermann, Massimiliano Di

Penta, and Sunghun Kim (Eds.). IEEE Computer Society, 233–236. https://doi.

org/10.1109/MSR.2013.6624034

[8] Lile Hattori andMichele Lanza. 2008. On the nature of commits. In 23rd IEEE/ACM
International Conference on Automated Software Engineering - Workshop Proceed-
ings (ASE Workshops 2008), 15-16 September 2008, L’Aquila, Italy. IEEE, 63–71.
https://doi.org/10.1109/ASEW.2008.4686322

[9] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. 2012. Technical debt: From

metaphor to theory and practice. IEEE Software 29, 6 (2012), 18–21. https:

//doi.org/10.1109/MS.2012.167

[10] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. 2019. The Technical

Debt Dataset. In Proceedings of the Fifteenth International Conference on Predictive
Models and Data Analytics in Software Engineering, PROMISE 2019, Recife, Brazil,
September 18, 2019, Leandro L. Minku, Foutse Khomh, and Jean Petric (Eds.).

ACM, 2–11. https://doi.org/10.1145/3345629.3345630

[11] Matias Martinez and Martin Monperrus. 2019. Coming: a tool for mining change

pattern instances from git commits. In Proceedings of the 41st International Con-
ference on Software Engineering: Companion Proceedings, ICSE 2019, Montreal, QC,
Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.).

IEEE / ACM, 79–82. https://doi.org/10.1109/ICSE-Companion.2019.00043

[12] Thomas J. McCabe. 1976. A Complexity Measure. IEEE Trans. Software Eng. 2, 4
(1976), 308–320. https://doi.org/10.1109/TSE.1976.233837

[13] Wes McKinney et al. 2010. Data structures for statistical computing in python. In

Proceedings of the 9th Python in Science Conference, Vol. 445. Austin, TX, 51–56.
[14] Birendra K. Mishra, Ashutosh Prasad, and Srinivasan Raghunathan. 2002. Quality

and Profits Under Open Source Versus Closed Source. (2002), 32. http://aisel.

aisnet.org/icis2002/32

[15] Mathieu Nassif and Martin P. Robillard. 2017. Revisiting Turnover-Induced

Knowledge Loss in Software Projects. In 2017 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2017, Shanghai, China, September 17-
22, 2017. IEEE Computer Society, 261–272. https://doi.org/10.1109/ICSME.2017.64

[16] Marco Ortu, Giuseppe Destefanis, Bram Adams, Alessandro Murgia, Michele

Marchesi, and Roberto Tonelli. 2015. The JIRA Repository Dataset: Understand-

ing Social Aspects of Software Development. In Proceedings of the 11th Interna-
tional Conference on Predictive Models and Data Analytics in Software Engineering,
PROMISE 2015, Beijing, China, October 21, 2015, Ayse Bener, Leandro L. Minku,

and Burak Turhan (Eds.). ACM, 1:1–1:4. https://doi.org/10.1145/2810146.2810147

[17] European Parliament and Council of the European Union. 2021. Regulation
(EU) 2016/679 of the European Parliament and of the Council of 27 April 2016
on the protection of natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing Directive 95/46/EC
(General Data Protection Regulation) (Text with EEA relevance). https://eur-

lex.europa.eu/eli/reg/2016/679/oj

[18] Shaun Phillips, Jonathan Sillito, and Robert J. Walker. 2011. Branching and

merging: an investigation into current version control practices. In Proceedings
of the 4th International Workshop on Cooperative and Human Aspects of Software
Engineering, CHASE 2011, Waikiki, Honolulu, HI, USA, May 21, 2011, Marcelo

Cataldo, Cleidson R. B. de Souza, Yvonne Dittrich, Rashina Hoda, and Helen

Sharp (Eds.). ACM, 9–15. https://doi.org/10.1145/1984642.1984645

[19] Vidyasagar Potdar and Elizabeth Chang. 2004. Open source and closed source

software developmentmethodologies. In 26th International Conference on Software
Engineering. IET, 105–109. https://doi.org/10.1049/ic:20040275

[20] S. Raghunathan, A. Prasad, B.K. Mishra, and Hsihui Chang. 2005. Open source

versus closed source: software quality in monopoly and competitive markets.

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans
35, 6 (2005), 903–918. https://doi.org/10.1109/TSMCA.2005.853493

[21] Foyzur Rahman and Premkumar T. Devanbu. 2011. Ownership, experience and

defects: a fine-grained study of authorship. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May
21-28, 2011, Richard N. Taylor, Harald C. Gall, and Nenad Medvidovic (Eds.). ACM,

491–500. https://doi.org/10.1145/1985793.1985860

[22] Nicolas Riquet. 2022. nicolasriquet/GitDelver: 1.7.3. https://doi.org/10.5281/

zenodo.5817559

[23] Nicolas Riquet, Xavier Devroey, and Benoît Vanderose. 2022. GDED (GitDelver
Enterprise Dataset). https://doi.org/10.5281/zenodo.5838537

[24] Brian Robinson and Patrick Francis. 2010. Improving industrial adoption of

software engineering research: a comparison of open and closed source soft-

ware. In Proceedings of the International Symposium on Empirical Software En-
gineering and Measurement, ESEM 2010, 16-17 September 2010, Bolzano/Bozen,
Italy, Giancarlo Succi, Maurizio Morisio, and Nachiappan Nagappan (Eds.). ACM.

https://doi.org/10.1145/1852786.1852814

[25] Emad Shihab, Christian Bird, and Thomas Zimmermann. 2012. The effect

of branching strategies on software quality. In 2012 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM ’12,
Lund, Sweden - September 19 - 20, 2012, Per Runeson, Martin Höst, Emilia

Mendes, Anneliese Amschler Andrews, and Rachel Harrison (Eds.). ACM, 301–

310. https://doi.org/10.1145/2372251.2372305

[26] SonarQube. 2021. Code Quality and Code Security - SonarQube. https://www.

sonarqube.org/

[27] Davide Spadini, Maurício Finavaro Aniche, and Alberto Bacchelli. 2018. PyDriller:

Python framework for mining software repositories. In Proceedings of the 2018
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 04-09, 2018, Gary T. Leavens, Alessandro Garcia, and

Corina S. Pasareanu (Eds.). ACM, 908–911. https://doi.org/10.1145/3236024.

3264598

[28] Nikolai Sviridov, Mikhail Evtikhiev, and Vladimir Kovalenko. 2021. TNM: A Tool

for Mining of Socio-Technical Data from Git Repositories. In 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR). IEEE, 295–299.
https://doi.org/10.1109/MSR52588.2021.00041

[29] Damian A. Tamburri, Philippe Kruchten, Patricia Lago, and Hans van Vliet. 2015.

Social debt in software engineering: insights from industry. Journal of Internet
Services and Applications 6, 1 (dec 2015), 10. https://doi.org/10.1186/s13174-015-

0024-6

[30] The pandas development team. 2020. pandas-dev/pandas: Pandas. https://doi.

org/10.5281/zenodo.5574486

[31] Adam Tornhill. 2018. Software Design X-Rays: Fix Technical Debt with Behavioral
Code Analysis. Pragmatic Bookshelf.

[32] Terry Yin. 2021. Lizard’s GitHub page. https://github.com/terryyin/lizard

[33] Andy Zaidman, Bart Van Rompaey, Serge Demeyer, and Arie van Deursen. 2008.

Mining Software Repositories to Study Co-Evolution of Production & Test Code.

In First International Conference on Software Testing, Verification, and Validation,
ICST 2008, Lillehammer, Norway, April 9-11, 2008. IEEE Computer Society, 220–229.

https://doi.org/10.1109/ICST.2008.47

[34] Thomas Zimmermann, Andreas Zeller, Peter Weissgerber, and Stephan Diehl.

2005. Mining version histories to guide software changes. IEEE Transactions on
Software Engineering 31, 6 (2005), 429–445. https://doi.org/10.1109/TSE.2005.72

https://doi.org/10.1002/smr.2255
https://doi.org/10.1002/smr.2255
https://doi.org/10.1109/ICSE.2013.6606588
https://doi.org/10.7551/mitpress/12440.001.0001
https://doi.org/10.1145/1985441.1985464
https://doi.org/10.1145/1985441.1985464
https://doi.org/10.1109/MSR.2013.6624034
https://doi.org/10.1109/MSR.2013.6624034
https://doi.org/10.1109/ASEW.2008.4686322
https://doi.org/10.1109/MS.2012.167
https://doi.org/10.1109/MS.2012.167
https://doi.org/10.1145/3345629.3345630
https://doi.org/10.1109/ICSE-Companion.2019.00043
https://doi.org/10.1109/TSE.1976.233837
http://aisel.aisnet.org/icis2002/32
http://aisel.aisnet.org/icis2002/32
https://doi.org/10.1109/ICSME.2017.64
https://doi.org/10.1145/2810146.2810147
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.1145/1984642.1984645
https://doi.org/10.1049/ic:20040275
https://doi.org/10.1109/TSMCA.2005.853493
https://doi.org/10.1145/1985793.1985860
https://doi.org/10.5281/zenodo.5817559
https://doi.org/10.5281/zenodo.5817559
https://doi.org/10.5281/zenodo.5838537
https://doi.org/10.1145/1852786.1852814
https://doi.org/10.1145/2372251.2372305
https://www.sonarqube.org/
https://www.sonarqube.org/
https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1109/MSR52588.2021.00041
https://doi.org/10.1186/s13174-015-0024-6
https://doi.org/10.1186/s13174-015-0024-6
https://doi.org/10.5281/zenodo.5574486
https://doi.org/10.5281/zenodo.5574486
https://github.com/terryyin/lizard
https://doi.org/10.1109/ICST.2008.47
https://doi.org/10.1109/TSE.2005.72

	Abstract
	1 Introduction
	2 Context and motivation
	3 Data collection and anonymization
	3.1 Repository selection
	3.2 Mining tool
	3.3 Anonymization requirements

	4 Dataset generation
	4.1 Mining code history and complexity
	4.2 Merging and anonymization

	5 Dataset description
	6 Discussion and future work
	7 Related work
	8 Conclusion
	References

